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Chapter 1

Introduction

1.1 Purpose

This Software Requirements Specification (later just SRS) document is in-
tended to serve as a fundamental “UFO framework” specifications document
used for designing the system. It identifies the needs of an online data pro-
cessing pipeline used in scientific environment, its optimization and interface
to the control system of such environment. Framework verification and vali-
dation will be carried out based on this document.

The document will be used by the framework developers, control sys-
tem integrators and testers responsible for verification and validation of the
developed system.

1.2 Scope

“UFO framework” is a software system to be developed as a part of the
BMBF UFO project (Ultra fast X-ray imaging of scientific processes with
on-line assessment and data driven process control).

The system targets scientific community using imaging methods. The
community uses standard image processing techniques (tomographic recon-
struction) and develops new image processing methods for new applications.
The future applications cannot be foreseen. Thus, the system to be devel-
oped needs to provide fast implementations of standard image processing
routines, and simultaneously needs to be highly modular in order to provide
an easy-to-use framework for developing new image processing methods. The



new methods will be developed by connecting basic building blocks provided
by the framework. These blocks are simple mathematical operations or im-
age processing routines — filters. The filters which are connected form a data
processing pipeline (a graph structure), which will be executed to perform
the desired functionality.

The system is essential in order to perform high-speed imaging exper-
iments, build a high-throughput experimental station and perform image-
driven feedback for controlling the experimental station and the studied pro-
cess on-line.

1.3 Definitions, Conventions, Acronyms, and
Abbreviations
Let us define the following:
e A base type T that specifies a set of valid values

e A digital image I as an n-dimensional data structure (n € Ny) over a
base type T with the following operations:

— create : Integer” — I

— delete : I

— dimensions : I — Integer (number of dimensions)
— size : I — Integer™ (size in every dimension)

— get : I x Integer” — T (gets pixel value)
— set : I x Integer"x T (sets pixel value)
In the remainder of this document we will simply use image instead of
a digital image for briefness. If two or more digital images appear in a

definition, then their dimensions and sizes in all dimensions are considered
to be the same unless explititly stated otherwise.

1.4 Overview

In section 2, general functionality description is provided with characteriza-
tion of the targeted user community. Specific requirements on the system



are discussed in section 3, first on a higher level describing graph and filters
creation, then the essential filters for building new image processing methods
are described. Software and user interfaces are discussed at the end of this
document.



Chapter 2

General Description

2.1 Product Perspective

The UFO framework can be used in two ways: independently on its own or
as a service from external systems. The standalone use case is mandatory
for developing, debugging and testing purposes. The other use case will be
a control system that integrates the UFO framework so that it can start a
computation whenever experiment conditions are met. This will then depend
on the actual application and cannot be defined any further.

2.2 Product Functions

2.2.1 Core Functionality

The core of the UFO framework is a set of interdependent classes that pro-
vide the basic building blocks to build graphs of dynamically loadable filter
nodes and access hardware as well as external components such as kernel files.
Furthermore, a replaceable scheduler module that orchestrates the execution
of the filters according to resource availability will be provided.

It will be possible to change the graph structure and save the history
of such changes, execute the graph in a “verbose” mode, providing detailed
information about each of the filter inputs, outputs and execution status.
Logging will be implemented for fast debugging purposes. The user will be
able to specify the precision of the calculations to improve performance by
setting the execution mode of the graph to full or limited precision in which



case faster hardware operations will be used. It will be possible to “group”
filters into a new filter and make parameter scans (see Sections 3.1.3 and
3.1.6), which means that users will be able to provide a set of values for
every filter’'s parameter and execute the graph iteratively with parameter
changes mapped to respective iterations. This way the users will be able to
easily review changes in results based on parameter alternations.

The core objects will be mapped to a standard API that can be used
stand-alone or in a third-party application through various language bind-
ings. For interoperability between different languages, an on-disk represen-
tation of a graph instance can be stored and read.

Remote access to the computational resources will be provided. A TANGO
[1] interface will be provided to integrate the framework into the experimental
station’s control system.

2.2.2 Filter Functionality

Filters developed as a part of the framework will have a clear description of
their inputs and outputs, so the user will be able to connect them to a graph
structure properly. Each of the paths in the graph will always start with a
filter called source. It will provide an access point to either online (camera
stream) or offline (data storage) data. The last filter of each path in the
graph will be a sink, which will write the data to a permanent storage. The
actual image processing will be performed by filters between source and sink
filters. Users will be able to modify filters behavior by setting parameters
specific for every one of them.

Each filter in the graph has an arbitrary, pre-defined number of inputs
and outputs. Each output must be connected to an input of another filter
in the graph. Termination of data flow is guaranteed with filters that do
not provide an output. Thus the computation graph is a directed acyclic
multigraph. For more information about filters see section 3.1.1.

2.3 User Characteristics

The targeted community is the X-ray imaging scientific community. The
majority of users in this community develops new methods using Matlab® or
other high-level language, meaning they are used to some for them convenient
functionality of the programming language they use. Therefore, the useful



functionality must be identified and provided also by the framework for easier
crossover from high-level languages to the new system.



Chapter 3

Specific Requirements

3.1 Functional Requirements

3.1.1 Filters

A filter is a multi-ported node in a graph. Each node can have zero to NV input
ports and zero to M output ports to model different processing modalities.
Therefore, a filter can be classified as either a source without inputs, a sink
without outputs or an arbitrary processing filter.

A source filter must implement a generate method that produces output
for each output port, a sink filter must implement a consume method that
accepts input on each input port and an arbitrary filter must implement a
process method that accepts input on each input port and produces output
on each output port.

A special variant of a processing filter is a reduction filter. This filter must
implement a collect method that accepts inputs on each input port. After
a specified number of input data has been collected, it is reduced to one or
more output data items. For example an averaging filter would produce an
averaged image of the whole (finite) input stream.

Each port is restricted to accept or produce images with a specific image
dimensionality n. The methods are implemented either on CPU or GPU but
filters are free to implement methods on both architectures.

The primary data transfer between two filters happens through memory
buffers. Another type of data are typed properties that belong to a filter.
Users can change these before execution to parametrize the computation or
bind two properties of two different filters together. A filter can then listen to



changes to its own properties or wait until a specified condition is satisfied.

Starting with section 3.1.8, we will describe particular filters which are
guaranteed to be implemented and integrated into the framework. We de-
scribe the filters based on their complexity. Common or simple to understand
filters are described by their inputs and outputs. More complicated filters
are first described in general and then, if needed for clarity, the respective
parts of the filter are described (Inputs, Processing and Outputs).

3.1.2 Filter Creation

The exact set of existing filters cannot be pre-determined, therefore there
must be a mechanism to construct a filter from a description.

Inputs A human-readable, unique string identifier.

Processing Set up everything that is necessary for a filter to be in a valid
state.

Outputs A new filter.

3.1.3 Filter Composition

Because several filters are very basic building blocks, restating them over
and over again when defining the graph is time-consuming and error prone.
Therefore, there will be a mechanism that allows users to compose a list of
filters into a larger single filter block.

Inputs A list of filters.

Outputs A new filter that contains the input filters.

3.1.4 Graph Creation

A graph consists of nodes that are connected by directed edge relations. Each
edge specifies the data flow from one node’s output port to another node’s
input port.

Inputs Producing filter, producer’s output port, consuming filter and con-
sumer’s input port.

Processing Store the connection information.



3.1.5 Graph Serialization

To exchange graph information between different languages and keep config-

uration stored for a longer term, the graph must be serialized and written to
disk.

Inputs A graph object

Processing Save nodes and their current property values as well as the
relationship between them.

Outputs A JSON compliant configuration®

3.1.6 Graph Execution

The graph must be executed by the user when it is completely defined.

In order to evaluate the effect of different parameters values assigned to
the individual filters, it must be possible to execute it repeatedly with a
different parameter combination in a parameter scan fashion. It is up to the
user and filters to define metrics and to interpret outputs.

Mandatory inputs A graph object
Optional inputs Ranges of valid parameter values

Outputs No immediate outputs apart from what the filter chain defines.

3.1.7 Logging

All events concerning the operation must be logged to a user-specified loca-
tion such as a file or the terminal. The output must be classified and routed
according to the log messages’ severance:

e Mandatory messages
e Optional information
e Debug messages

e Warnings

ISpecification of the format here?
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e Errors

Moreover, the output must be classified according to its origin:
e Core component
e Specific filter

e External, third-party dependency

3.1.8 Basic Arithmetic

Basic arithmetic will be implemented to provide pointwise elementary oper-
ations on images. Operation is one of the +, — - = 2" {/x. Two variants
for all operations will provided:

e I X I — I,in thiscasean operation is applied to all respective pixels
in the images

e I X T — I,an operation is applied to all pixels in the image and a

base type value

3.1.9 Relational Operations

Relational operations are defined pointwise with result True or False for
every pixel in an image, an operation is one of the =, <, <, >, >. Two variants
will be provided:

e I x I — I,in thiscase an operation is applied to all respective pixels
in the images

e I X T — I,an operation is applied to all pixels in the image and a
base type value

The resulting image has as its base type Bool.

3.1.10 Bitwise Operations

Bitwise operations NOT, AND,OR, XOR on images will be provided. Two
variants will be implemented:

11



e I x I — I,in thiscasean operation is applied to all respective pixels
in the images

e I X T — I,an operation is applied to all pixels in the image and a
base type value

3.1.11 Standard Statistical Operations

The following standard statistical operations will be implemented as stan-
dalone filters:

e mean

e median
e min

e max

e variance

e standard deviation

All of the above mentioned operations are defined as T — T.

3.1.12 Histogram

Histogram is a filter which counts number of repetitions of grey values in an
image. The output takes into account number of “bins” into which we want
to divide the intensities. The filter is defined as I x Integer — A.

Inputs An image, an integer representing the number of bins.

Processing The input image intensities are split into intervals depending on
the number of bins. All pixels with intensities in a particular interval
are then counted and stored in the output array.

Output Let e,,;, € T be the smallest grey value in the input image, €,,4, €
T the maximum one. The interval width is then defined as w =
cmactmin  The output is then an array ordered by intensity intervals
A ={xg,...,xp_1 | i € Integer,z; € Integer is the number of pixels
with grey values in interval (e, + wi, €min + w(i + 1)) if @ # b — 1,
(€min + Wi, €min + w(i + 1)) otherwise}.
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3.1.13 Determination of the Rotation Center

Tomographic data sets consist of images taken from different sample angles.
The sample can be misaligned from the center of the FOV. For some recon-
struction algorithms to work, the center of rotation must be computed prior
to the reconstruction itself. The filter will compute the center of rotation
from a set of images and is defined as I" — Integer®.

Inputs A sequence of images, where all of them are 2-dimensional.

Outputs An (z,y) tuple representing the position of the center of rotation.

3.1.14 Padding

Symmetric, periodic and constant padding will be supported. Symmetric and
periodic padding are described as I x Integer™ — I. Constant padding is
described as I x Integer"x T — I.

Inputs An image, new sizes of the image in every dimension, fill value (only
constant case).

Processing Symmetric and periodic padding use patches of the original
image as fill values while the constant case uses a defined base type
value.

Outputs If the input image is Iy, output image is I;, ng = size(ly), n, =

size(l;) = Vi € Integer,: < dimensions (/) : ng, < Ny,

3.1.15 Cropping

Image cropping is described as I x Integer” — I.

Inputs An image, new sizes of the image in every dimension.

Outputs If the input image is I, output image is I;, ng = size(ly), n, =
size(l;) = Vi € Integer,: < dimensions (/) : 1o, > Ny,

13



3.1.16 Binning
Image binning is a form of quantization and is defined as I x Integer™ — I.

Inputs An image, number by which the respective axis length will be di-
vided.

Processing The resulting image I,.., is composed of the averages of respec-
tive ranges from the input image.

Outputs If the input image is Iy, the second argument is b = (b, ..., b,_1),

output image is I, ng = size(ly), n; =size(ly) = Vi € Integer,i <
dimensions([;) : n;, = 7201

3.1.17 Affine Transformations
Affine transformation is defined as I x I — I.

Inputs The first argument is a d-dimensional image to be transformed and
the second argument is a 2-dimensional image representing the trans-
formation matrix A and size(A) = (d+1,d+ 1)

Processing the transformation matrix is applied to the input’s image coor-
dinates.

Outputs The transformed image.

3.1.18 Fourier Transformation

Fourier transformation is an important tool in image processing. Therefore,
three filters providing forward, inverse and shift will be implemented.
The filters are defined as follows:

e forward transform — I — F(I)
e inverse transform — F(I) — I

e shift — F(I) — F(I) which swaps quadrants of the transformation so
that low frequencies are located in the center of the image

The F(I) notation is used in this section for clarity reasons. In practice, an
image in Fourier domain is an image as defined in chapter 1.3 with complex
base type.
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3.1.19 Bandpass Filter

Bandpass filter operates in the fourier domain. It processes some frequencies
of the image and is defined as I X Float X Enum — I

Inputs An image, attenuation coefficient, filter profile E = {Step, Gaussian,
Sine, Polynomial, Butterworth}.

Outputs Image with removed specified frequencies.

where the third argument is an enumeration F of possible filter profiles,
E = {Step, Gaussian, Sine, Polynomial, Butterworth}.

3.1.20 Phase Retrieval

Phase retrieval filter will be used to deal with the phase problem. It is defined
on 2D images as I™ — I",m,n € N;m > n. The following algorithms for
this filter will be implemented:

e Paganin

e Moosmann/Hoffmann

3.1.21 Grating Interferometry

Grating interferometry is used for imaging in multiple contrasts, such as
absorption, phase and dark-filed imaging (scattered radiation). It is based
on diffraction by X-ray grating, its self-imaging effect and Moire pattern
recognition. So-called phase-stepping technique is applied when all three
contrast functions shall be obtained. The method is based on acquisition
of images at the different gratings (lateral) position with and without the
sample. With equidistant steps analysis of the data can be performed via
FFT. The algorithm is defined as I™ x I" = I3, m,n € N,n > 3,m =n, I™
are flat fields and I" are side steps. All images used by this method are 2D
images.

15



3.1.22 Phase Unwrapping

Phase extracted by the phase retrieval filter suffers from 27-based jumps
(wrapped phase) which causes problems in further image processing. There-
fore, an “unwrapping” technique which resolves the continuous phase must
be employed before further processing. The filter is defined as I — I for 2D
images.

3.1.23 Convolution

Convolution will be implemented and is defined on parameters I x I — I,
where number of dimensions and dimension sizes of the two input images
may be different. The resulting image dimensions are equal to the biggest of
the inputs.

3.1.24 Hot Pixel Filter

“Hot” pixels are the ones with intensities much different from other pixels
in a small neighbouring area, thus are considered defective in the respective
frame. Filter for removing will be provided and is defined as I — I.

3.1.25 Reduction

Reduction is an operation which is applied to all values in an image along
a specified axis. The filter which will perform such operation is defined as
I X op X Integer — 1.

Inputs A digital image, operation and axis number. Operation is defined
as op: I — T, where [ is a d-dimensional input image.

Processing Apply operation op along a specified axis.
Outputs If [ is an n-dimensional image and n > 0, the result is an (n — 1)-

dimensional image, 0-dimensional image otherwise.

3.1.26 Interpolation

Various interpolation techniques will be implemented, they are defined as
I — I and at least the following methods will be provided:

16



Nearest neighbour

e Linear

Quadratic
Cubic

Spline

3.1.27 Noise Reduction

Noise is a serious issue in high-speed experiments due to extremely low
recording time. The filter for its reduction operates on I — I. Two tech-
niques will be implemented, namely:

e Average
e Mean
e Non-local means

e Anisotropic diffusion

3.1.28 Tomographic Reconstruction

Tomographic reconstruction is one of the key filters in the framework. Several
techniques will be implemented. The filter is defined as I"™ — 1.

Inputs A sequence of 2-dimensional images (radiographs).

Processing Transformation of the input sequence of radiographs into a 3D
volume.

Outputs A 3-dimensional image.

At least the following techniques will be implemented:

e Filtered backprojection
e Direct Fourier inversion
e Linogram method

e Algebraic reconstruction

17



3.1.29 Ring Artifact Removal

Ring artifacts are caused by detector faults and are a common problem for
tomographic reconstruction. Therefore we need to provide a way to remove
them. The filter for their removal is defined as I — I. Both input and output
images are 2-dimensional.

3.1.30 Stripes Removal

This filter will be used to remove stripe-like patterns from images. It is
defined as T — 1.

3.1.31 Change Detection

Change detection is needed for recognizing events in which the users are
interested. It is defined as I x I — Bool. If a change is detected, the result
is True, False otherwise.

3.1.32 Object Tracking

Object tracking enables us to track one or more objects in the scene at the
same time. It is defined as I" — M"~!. Mis an object-sorted set over d-tuples,
which represent position changes of all tracked objects.

Inputs A time-ordered image sequence.

Processing Let Vi € Integer,i > 0 A i <n — 1 be indices into the input
sequence, p; = (po,...,Pa—1) be a position of an object in image I;,
position p;,; = (p, ..., Pj;_;) an object’s position in image ;. Position
change for object o is then defined as m = (p, — po, ..., Plj_1 — Pa—1) and
stored in the position changes set.

Outputs A time-ordered sequence of position changes sets.

3.1.33 Optical Flow

Optical flow is very similar to the object tracking filter but instead of looking
for object’s position changes, we look for position change for every pixel in
an image. The filter is defined as I" — M"~!. M is a digital image over a base
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type d-tuple representing the position change, which we will call a dense
motion field.

Inputs A time-ordered image sequence.

Processing Let Vi € Integer,i > 0 A ¢ < n — 1 be indices into the
input sequence, I; and [;;; two consequent input images and x =
(29, ..., Tq—1) an index into the image I;. Optical flow then finds an
index ' = (z{,...,2),_,) into the image I;;1, such that get(l;, &) =
get (I;11,x'). The algorithm then performs a set (M;, x, ' — x).

Outputs A time-ordered sequence of dense motion fields.

3.2 Performance Requirements

Performance requirements on the described system arise from the experi-
ments which will be conducted within the UFO project. High sample through-
put and high data throughput experiments both require fast image processing
in order not to cause a time bottleneck during an X-ray experiment.

High sample throughput experiments require fast image analysis which is
later used by control mechanisms moving the experimental station’s hardware
setup. Thus the required limit on the computational time of the image
analysis algorithms developed within the framework is to be less or equal
to the control mechanisms response time plus the movement of hardware
equipment.

High data throughput experiments require fast reconstruction and anal-
ysis algorithms in order to provide a preview shortly after data acquisition.
From this point of view we require image analysis algorithms to finalize com-
putation before the next dataset is downloaded from a camera. As an exam-
ple may serve a tomographic experiment where we can reconstruct tomogram
1 while tomogram ¢+ 1 is being recorded by the camera. When the data with
tomogram ¢ + 1 is downloaded the recontruction of tomogram ¢ must be
finished in order to be able to start with reconstruction of tomogram ¢ + 1.
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3.3 External Interface Requirements

3.3.1 User Interfaces

A GUI for graph an filters manipulation will be provided. Functionality
covered by the GUI is the following:

e Graph manipulation (create, delete)

e Filters manipulation (add to graph, delete from graph, connect to oth-
ers, group more filters to a new “compound” filter)

e Graph execution (run, pause, resume, stop)

e Filter parameters scans (graph run for different filter parameters), users
will provide parameter ranges for particular runs

e History access

e Data visualization

3.3.2 Hardware Interfaces

The UFO framework must run on commodity PC hardware with standard
x86 (32- or 64-bit) CPUs and OpenCL compliant GPUs from NVIDIA and
AMD. Each filter executes its code on a designated CPU or GPU.

3.3.3 Software Interfaces

TANGO interface will be provided in order to integrate the system into an
existing control system of an experimental station. The interface specifica-
tion will be made in collaboration with I'T department of ANKA synchrotron
which needs to provide requirements on such an interface. The implementa-
tion will be based on that specification.

20



Bibliography

[1]  The TANGO Control System Manual Version 8.0. The TANGO Team.
2012. URL: http://www.tango-controls.org/Documents/tango-ker
nel/copy_of_index_html.

21


http://www.tango-controls.org/Documents/tango-kernel/copy_of_index_html
http://www.tango-controls.org/Documents/tango-kernel/copy_of_index_html

	Introduction
	Purpose
	Scope
	Definitions, Conventions, Acronyms, and Abbreviations
	Overview

	General Description
	Product Perspective
	Product Functions
	Core Functionality
	Filter Functionality

	User Characteristics

	Specific Requirements
	Functional Requirements
	Filters
	Filter Creation
	Filter Composition
	Graph Creation
	Graph Serialization
	Graph Execution
	Logging
	Basic Arithmetic
	Relational Operations
	Bitwise Operations
	Standard Statistical Operations
	Histogram
	Determination of the Rotation Center
	Padding
	Cropping
	Binning
	Affine Transformations
	Fourier Transformation
	Bandpass Filter
	Phase Retrieval
	Grating Interferometry
	Phase Unwrapping
	Convolution
	Hot Pixel Filter
	Reduction
	Interpolation
	Noise Reduction
	Tomographic Reconstruction
	Ring Artifact Removal
	Stripes Removal
	Change Detection
	Object Tracking
	Optical Flow

	Performance Requirements
	External Interface Requirements
	User Interfaces
	Hardware Interfaces
	Software Interfaces



