
Virtex-6 FPGA Connectivity
Targeted Reference Design
with AXI4 Protocol

Pre-Production User Guide

UG379 (v1.0) October 5, 2010

The ISE Design Suite 12.3 is a Pre-production release for designs that make use of AXI IP.

• The AXI IP in this release have not completed qualification for use in production designs.

• The software in this release has not completed qualification for use in production designs containing
AXI IP.

• Some wizard functionality in Xilinx Platform Studio does not yet fully support AXI-based designs.

FOR ISE DESIGN SUITE 12.3, PRE-PRODUCTION STATUS APPLIES ONLY TO DESIGNS MAKING USE
OF AXI IP.

Customers can still successfully create and implement embedded and non-embedded AXI-based designs
using ISE Design Suite 12.3.

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com UG379 (v1.0) October 5, 2010

Xilinx is disclosing this user guide, manual, release note, and/or specification (the “Documentation”) to you solely for use in the development
of designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the
Documentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves
the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors
contained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with
technical support or assistance that may be provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER
WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY
RIGHTS. IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL
DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

CRITICAL APPLICATIONS DISCLAIMER
XILINX PRODUCTS (INCLUDING HARDWARE, SOFTWARE AND/OR IP CORES) ARE NOT DESIGNED OR INTENDED TO BE
FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS IN LIFE-SUPPORT OR SAFETY
DEVICES OR SYSTEMS, CLASS III MEDICAL DEVICES, NUCLEAR FACILITIES, APPLICATIONS RELATED TO THE DEPLOYMENT OF
AIRBAGS, OR ANY OTHER APPLICATIONS THAT COULD LEAD TO DEATH, PERSONAL INJURY OR SEVERE PROPERTY OR
ENVIRONMENTAL DAMAGE (INDIVIDUALLY AND COLLECTIVELY, “CRITICAL APPLICATIONS”). FURTHERMORE, XILINX
PRODUCTS ARE NOT DESIGNED OR INTENDED FOR USE IN ANY APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE OR
AIRCRAFT, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN
THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR.
CUSTOMER AGREES, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE XILINX PRODUCTS, TO
THOROUGHLY TEST THE SAME FOR SAFETY PURPOSES. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW,
CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN CRITICAL APPLICATIONS.

AUTOMOTIVE APPLICATIONS DISCLAIMER
XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING
FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A
VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE
XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES
THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF
XILINX PRODUCTS IN SUCH APPLICATIONS.

© Copyright 2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of
Xilinx in the United States and other countries. PCI, PCI Express, PCIe, and PCI-X are trademarks of PCI-SIG. All other trademarks are the
property of their respective owners.

http://www.xilinx.com

UG379 (v1.0) October 5, 2010 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide

Revision History
The following table shows the revision history for this document.

Date Version Revision

10/05/10 1.0 Initial Xilinx release.

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com UG379 (v1.0) October 5, 2010

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 5
UG379 (v1.0) October 5, 2010

Revision History . 3

Preface: About This Guide
Guide Contents . 9
Additional Documentation . 10
Additional Support Resources . 10

Chapter 1: Introduction to the Reference Design
Features. 12

Chapter 2: Getting Started
Requirements . 15

Hardware Test Setup Requirements . 15
Simulation Requirements . 16

Hardware Test Setup . 16
Board Setup . 16
Hardware Bring-Up . 19
Driver Compilation . 25
Using the Application GUI . 27
Exercising Application Logic in Hardware through the GUI . 34

XAUI Specific Features . 34
Raw Data Specific Features. 35

Shutting Down the System . 35
Rebuilding the TRD . 37
Implementing the Design Using Command Line Options . 37
Implementing the Design Using ISE Project Navigator . 38
Reprogramming the TRD . 39

Simulation . 40
Overview . 40
Simulating the Design . 41

User-Controlled Macros . 42
Test Selection . 42

Chapter 3: Functional Description
Hardware Design . 43

Base System Components . 44
PCI Express. 44
Scatter-Gather Packet DMA . 47
Virtual FIFO . 52

Application Components . 55
XAUI Path. 55
Raw Data Path . 64

Clocking . 68
Resets . 69

Table of Contents

http://www.xilinx.com

6 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Software Design . 71
Kernel Components . 72

Driver Entry Points . 72
DMA Operations . 72
Block Data Handler . 72
Interrupt Service Routine . 73
Performance Monitor . 73
User Hooks . 73
User Space Components . 73

Control . 73
Monitor . 74
GUI Programming Environment . 76

DMA Descriptor Management. 76
Dynamic DMA Updates . 76

Chapter 4: Performance Estimation
PCI Express Performance . 79
Virtual FIFO Performance . 82
XAUI Performance . 83
Measuring Performance . 83

Chapter 5: Designing with the TRD Platform
Software-Only Modifications . 85

Macro-Based Modifications . 85
Descriptor Ring Size . 86
Log Verbosity Level . 86
Driver Mode of Operation . 86

Size of Block Data . 86
Software Driver Code Modifications . 87

Top-Level Design Modifications . 87
Hardware-Only Modifications . 87

Configuring the PCIe Link as x4 Lane at 2.5 Gb/s . 87
Hardware and Software Modifications . 88

PCIe Vendor and Device ID . 88
Architectural Modifications . 88

Aurora IP Integration . 88

Appendix A: Resource Utilization

Appendix B: Register Descriptions
Packet DMA Registers . 94

Packet DMA Channel-Specific Registers . 94
Engine Control (0x0004) . 94
Next Descriptor Pointer (0x0008) . 95
Software Descriptor Pointer (0x000C) . 95
Completed Byte Count (0x001C) . 95

Common Registers . 96
Common Control and Status (0x4000) . 96

User Application Registers . 97

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 7
UG379 (v1.0) October 5, 2010

Design Version Register . 97
Design Version (0x8000) . 97

Performance Monitor Registers . 97
Transmit Utilization Byte Count (0x8200). 97
Receive Utilization Byte Count (0x8204) . 98
Upstream Memory Write Byte Count (0x8208). 98
Downstream Completion Payload Byte Count (0x820C). 98
Initial Flow Control Credits for Completion Data
for the PCIe Downstream Port (0x8210) . 99
Initial Flow Control Credits for Completion Header
for the PCIe Downstream Port (0x8214) . 99
Initial Flow Control Credits for Non-Posted Data
for the PCIe Downstream Port (0x8218) . 99
Initial Flow Control Credits for Completion Non-Posted Header
for the PCIe Downstream Port (0x821C) . 99
Initial Flow Control Credits for Posted Data
for the PCIe Downstream Port (0x8220) . 99
Initial Flow Control Credits for Posted Header
for the PCIe Downstream Port (0x8224) . 100

User App0 Registers . 100
XAUI Error (0x9000) . 100
XAUI IFG (0x9004) . 101
XAUI Config (0x9008) . 101
XAUI Status (0x900C) . 101

User App1 Registers . 101
Enable Generator (0x9100) . 101
Packet Length (0x9104) . 102
Enable Checker or Loopback (0x9108) . 102
Data Mismatch (0x910C) . 102

Appendix C: Directory Structure

http://www.xilinx.com

8 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 9
UG379 (v1.0) October 5, 2010

Preface

About This Guide

The Virtex®-6 FPGA Connectivity Targeted Reference Design delivers all the basic
components of a targeted design platform for the connectivity domain in a single package.
Targeted Design Platforms from Xilinx provide customers with simple, smart design
platforms for the creation of FPGA-based solutions in a wide variety of industries.

This user guide details a targeted reference design developed for the connectivity domain
on a Virtex-6 FPGA. The aim is to accelerate the design cycle and enable FPGA designers to
spend less time developing the infrastructure of an application and more time creating a
unique value-add design. The primary components of the Virtex-6 FPGA Connectivity
Targeted Reference Design are the Virtex-6 FPGA Integrated Block for PCI Express®,
Northwest Logic Packet DMA, Memory Interface Solutions for DDR3, and XAUI
LogiCORE™ IP block. The targeted reference design can sustain up to 10 Gb/s throughput
end to end.

Guide Contents
This document contains these chapters and appendices:

• Chapter 1, Introduction to the Reference Design, introduces the Virtex-6 FPGA
Connectivity Targeted Reference Design and summarizes its features.

• Chapter 2, Getting Started, provides a quick start guide to help the user get started
with the hardware setup and simulation.

• Chapter 3, Functional Description, describes the components of the system and how
they interface with each other.

• Chapter 4, Performance Estimation, shows the theoretical maximum throughput that
can be achieved.

• Chapter 5, Designing with the TRD Platform, gives examples on how users can
customize the components in this reference system according to their requirements.

• Appendix A, Resource Utilization, lists the FPGA resources used by the design,
including the slice count, number of block RAMs, etc.

• Appendix B, Register Descriptions, lists the registers commonly programmed and
read by the Reference Design driver.

• Appendix C, Directory Structure, gives a brief description of the files and where they
reside.

http://www.xilinx.com

10 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Preface: About This Guide

Additional Documentation
These referenced documents and links provide additional information useful to this guide:

1. Virtex-6 FPGA Connectivity Kit product page

http://www.xilinx.com/products/devkits/EK-V6-CONN-G.htm

2. Virtex-6 FPGA ML605 Evaluation Kit

http://www.xilinx.com/products/devkits/EK-V6-ML605-G.htm

3. Fedora Project

http://fedoraproject.org

4. Virtex-6 FPGA Connectivity Kit Documentation

http://www.xilinx.com/products/boards/v6conn/reference_designs.htm

5. UG366, Virtex-6 FPGA GTX Transceivers User Guide.

6. Virtex-6 FPGA Memory Interface Solutions

http://www.xilinx.com/support/documentation/
ipmeminterfacestorelement_meminterfacecontrol_mig.htm

7. Virtex-6 FPGA Integrated Block for PCI Express

http://www.xilinx.com/products/ipcenter/V6_PCI_Express_Block.htm

8. UG626, Synthesis and Simulation Design Guide.

9. Northwest Logic DMA Back End Core

http://www.nwlogic.com/packetdma

10. Xilinx® 10 Gigabit Attachment Unit Interface (XAUI) LogiCORE IP.

http://www.xilinx.com/products/ipcenter/XAUI.htm

11. GTK+ 2.0 Documentation

http://www.gtk.org/documentation.html

12. WP350, Understanding Performance of PCI Express Systems.

Additional Support Resources
To find additional documentation, see the Xilinx website at:

http://www.xilinx.com/support/documentation/index.htm.

To search the Answer Database of silicon, software, and IP questions and answers, or to
create a technical support WebCase, see the Xilinx website at:

http://www.xilinx.com/support.

http://www.xilinx.com/support/documentation/index.htm
http://www.xilinx.com/support
http://www.xilinx.com
http://fedoraproject.org
http://www.xilinx.com/products/boards/v6conn/reference_designs.htm
http://www.xilinx.com/products/ipcenter/V6_PCI_Express_Block.htm
http://www.xilinx.com/products/ipcenter/XAUI.htm
http://www.nwlogic.com/packetdma
http://www.xilinx.com/support/documentation/user_guides/ug366.pdf
http://www.xilinx.com/support/documentation/ipmeminterfacestorelement_meminterfacecontrol_mig.htm
http://www.gtk.org/documentation.html
http://www.xilinx.com/support/documentation/white_papers/wp350.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/sim.pdf
http://www.xilinx.com/products/devkits/EK-V6-ML605-G.htm
http://www.xilinx.com/products/devkits/EK-V6-CONN-G.htm

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 11
UG379 (v1.0) October 5, 2010

Chapter 1

Introduction to the Reference Design

The Virtex®-6 FPGA Connectivity Targeted Reference Design (TRD) showcases the
capabilities of Virtex-6 FPGAs and the various IP cores developed for this FPGA family.
Figure 1-1 shows the block level overview of the architecture of the TRD. With a few
custom RTL blocks interfacing with the IP blocks, the TRD can deliver up to 10 Gb/s
performance end to end.

X-Ref Target - Figure 1-1

Figure 1-1: Top-Level Design Overview

Packet
DMA

Software Hardware

C
2S

S
2C

C
2S

S
2C

x4
 P

C
Ie

 L
in

k
@

 5
.0

 G
b/

s
or

x8
 P

C
Ie

 L
in

k
@

 2
.5

 G
b/

s

Third Party IP FPGA Logic

64
-b

it
A

X
I4

 S
tr

ea
m

 In
te

rf
ac

e
@

 2
50

 M
H

z

Register
Interface

Performance
Monitor

User Space
Registers

Packet
Control

 with CRC
S2C_Ctrl

S2C_Data

64

G
T

X
 T

ra
ns

ce
iv

er
s

x4
 @

 5
 G

b/
s

/ x
8

@
 2

.5
 G

b/
s

In
te

gr
at

ed
 B

lo
ck

 fo
r

 P
C

I E
xp

re
ss

, v
2.

0

W
ra

pp
er

 fo
r

P
C

I E
xp

re
ss

B
as

e
D

M
A

 D
riv

er

R
aw

 D
at

a
D

riv
er

X
A

U
I D

riv
er

G
U

I

Xilinx IPIntegrated Blocks

Native
Interface
of DDR3
Memory

Controller

Multiport
Virtual
FIFO

UG379_c1_01_092710

Control

WR_Data

64

C2S_Ctrl

C2S_Data

64

XGMII
TX

X
A

U
I

G
T

X
 T

ra
ns

ce
iv

er
s

Control

RD_Data

64

Control

Data

64

XGMII
RX

Control

WR_Data

64

Control

Data

64

@400 MHz
@200 MHz

@250 MHz

@156.25 MHz@250 MHz@250 MHz

@250 MHz@250 MHz

@156.25 MHz

DDR3
64

Control

RD_Data

64

Control

Control

S2C_Ctrl

S2C_Data

64

Control

WR_Data

64

C2S_Ctrl

C2S_Data

64

R
aw

 D
at

a
Lo

op
ba

ck

Control

RD_Data

64

Control

WR_Data

64

256

256

Control

RD_Data

64

Packet
Control

 with CRC

Generator

Checker

http://www.xilinx.com

12 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Chapter 1: Introduction to the Reference Design

Features
The Virtex-6 FPGA Connectivity Targeted Reference Design has these components:

• Virtex-6 FPGA Integrated Block for PCI Express®

• Configured with either 4 lanes at a 5 Gb/s link rate (Gen2) or 8 lanes at a 2.5 Gb/s
link rate (Gen1) for PCI Express v2.0

• Provides a user interface compliant with AXI4-Stream interface protocol

• A performance monitor tracks the integrated block’s AXI4-Stream interface for PCIe
transactions

• Bus Mastering Scatter-Gather Packet DMA from Northwest Logic, a multichannel
DMA

• Supports full-duplex operation with independent transmit and receive paths

• Provides a packetized interface on the backend similar to LocalLink

• Monitors the performance of data transfers in receive and transmit directions

• Provides a control plane interface to access user-defined registers

• Multiport Virtual FIFO

• A highly efficient layer around the native interface of the Virtex-6 FPGA Memory
Controller and an external DDR3 memory device

• The Memory Interface Controller is delivered through the Memory Interface
Generator (MIG) tool

• XAUI LogiCORE™ IP block

• Utilizes serial I/O transceivers to provide a throughput up to 10 Gb/s

• XGMII TX and XGMII RX blocks interface with the XAUI LogiCORE IP block to align
data as per the XGMII format

• Control logic interfaces between the Packet DMA and the Multiport Virtual FIFO

• Software driver for a Linux platform

• Configures the hardware design parameters

• Generates and consumes traffic

• Provides a Graphical User Interface (GUI) to report status and performance
statistics

The Endpoint card configured with the TRD is plugged into a x4 or x8 PCIe® slot of the PC
motherboard/host system.

The Virtex-6 FPGA Integrated Block for PCI Express and the Packet DMA are responsible
for data transfers from host system to card (S2C) and card to host system (C2S).

Data to and from the host is stored in a virtual FIFO built around the DDR3 memory. This
Multiport Virtual FIFO abstraction layer around the DDR3 memory allows the user to
move traffic efficiently without the need to manage addressing and arbitration on the
memory interface. It also provides a larger depth when compared to storage implemented
using block RAMs.

The Integrated Block for PCI Express, Packet DMA, and Multiport Virtual FIFO can be
considered as the base system. The base system can bridge the host to any user application
running on the other end. The Packet DMA and Virtual FIFO of the Virtex-6 FPGA
Connectivity TRD are configured to support two applications:

• XAUI loopback as an example for network packet flow

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 13
UG379 (v1.0) October 5, 2010

Features

Variable length packets range from 64 bytes to 16 Kbytes

• Raw data loopback as an example for streaming data flow

Because the interface to the DMA backend is packetized, a fixed length is defined on
this path, which is user configurable. However, on the application end, the data does
not have any packet annotations and is streaming.

The software driver runs on the host system. It generates XAUI and raw data traffic for
transmit operations in the S2C direction. It also consumes the data looped back at the
application end in the C2S direction.

The modular architecture of TRD hardware and software components allows users to
reuse and customize it to their specific requirements.

http://www.xilinx.com

14 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Chapter 1: Introduction to the Reference Design

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 15
UG379 (v1.0) October 5, 2010

Chapter 2

Getting Started

This chapter is a quick start guide enabling the user to test the TRD in hardware with the
software driver provided and also simulate it. It provides step-by-step instructions for
testing the design in hardware.

Note: The screen captures in this document are conceptual representatives of their subjects and
provide general information only.

Requirements
This section lists the minimum prerequisites for hardware testing and simulation.

Hardware Test Setup Requirements
The prerequisites for testing the design in hardware are:

• Virtex®-6 FPGA Connectivity Kit [Ref 1], which contains:

• ML605 board [Ref 2] with an XC6VLX240T-1-FF1156 FPGA

• Fedora 10 LiveCD

• USB stick with:

- Design source files

- Device driver files

- Board design files

- Documentation

• CX4 FMC module (FPGA mezzanine card)

• CX4 loopback connector

• ISE software design tool

• Mini USB JTAG cable

• Universal 12V power supply

• PC with a PCIe® v2.0 slot

The recommended PC system motherboards for PCI Express® v2.0 are ASUS P5E
(Intel X38), ASUS Rampage II Gene (Intel X58), and Intel DX58SO (Intel X58). The Intel
X58 chipsets tend to show higher performance. This PC could have the Fedora 10
Linux operating system (32-bit kernel version 2.6.27 or later) installed on it or users can
use Fedora LiveCD to run the Virtex-6 FPGA Connectivity TRD.

http://www.xilinx.com

16 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Chapter 2: Getting Started

Simulation Requirements
The prerequisites for simulation are:

• ISE software design tool

• ModelSim v6.4b or later

Hardware Test Setup
This section details the hardware setup and the use of the application GUI to help the user
get started quickly with the design in hardware. It provides a step-by-step explanation on
hardware bring-up and using the provided application GUI.

Board Setup
This section details how to set up the hardware components required to demonstrate the
TRD.

1. Setting the ML605 jumpers and switches

Verify the switch and jumper settings are as shown in Figure 2-1 and Table 2-2.
X-Ref Target - Figure 2-1

Figure 2-1: ML605 Jumper and Switch Settings

SW1 J65 J18 J54 J19 S2 S1

J35
UG379_c2_01_091510

J42J66, J67, J68

J17 SW2 J69

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 17
UG379 (v1.0) October 5, 2010

Hardware Test Setup

Table 2-1: Switch Settings

Switch Function/Type Setting

SW2 Board Power Slide-Switch ON

SW1

User GPIO 8-Pole DIP Switch

8 OFF

7 OFF

6 OFF

5 OFF

4 OFF

3 OFF

2 OFF

1 OFF

S1

System ACE™ CF Configuration and Image
Select 4-Pole DIP Switch

4 SysACE Mode = 1 ON

3 SysACE CFGAddr 2 = 0 OFF

2 SysACE CFGAddr 1 = 0 OFF

1 SysACE CFGAddr 0 = 0 OFF

S2

FPGA Mode, Boot PROM Select, and FPGA
CCLK 6-Pole DIP Switch

6 FLASH_A23 =0 OFF

5 M2 = 1 ON

4 M1 = 1
M[2:0] = 010 = Master BPI-Up

ON

3 M0 = 0 OFF

2 CS_SEL = 0 = Boot from BPI Flash OFF

1 EXT_CCLK = 1 ON

Table 2-2: Jumper Settings

Jumper Function Setting

J69 System ACE CF Error LED Enable No jumper

GMII

J66
Pins 1-2: GMII/MII to Cu

Pins 2-3: SGMII to Cu, No Clock
Jump 1-2

J67
Pins 1-2: GMII/MII to Cu

Pins 2-3: SGMII to Cu, No Clock
Jump 1-2

J68 J66 1-2, J68 ON:RGMII, modified MII in Cu No jumper

http://www.xilinx.com

18 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Chapter 2: Getting Started

2. Connecting the FMC module and XAUI loopback connector

The ML605 board is shipped with a CX4 FMC module attached to the FMC_HPC
connector on the board. To run the TRD, the XAUI data needs to be externally looped
back. An FMC CX4 loopback connector is provided in the Virtex-6 FPGA Connectivity
Kit. Remove the protective cap from the connector and carefully plug the connector
into the FMC module’s J2 connector as shown in Figure 2-2.

FMC Bypass

J18 Exclude FMC LPC connector Jump 1-2

J17 Exclude FMC LPC connector Jump 1-2

System Monitor

J19 Test_mon_vref sourced by U23, REF3012 Jump 1-2

J35 Measure voltage on R-Kelvin on 12V rail
Jump 9-11

Jump 10-12

SFP Module

J54 Full BW Jump 1-2

J65 SFP Enable Jump 1-2

PCIe Lane Size

J42 4-Lane Jump 3-4

X-Ref Target - Figure 2-2

Figure 2-2: XAUI Data Loopback Connector Installation

Table 2-2: Jumper Settings (Cont’d)

Jumper Function Setting

UG379_c2_02_091510

CX4 Loopback Connector

J2

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 19
UG379 (v1.0) October 5, 2010

Hardware Test Setup

Hardware Bring-Up
This section lists the detailed steps for hardware bring-up and use of the delivered
software driver.

1. With the host system switched off, insert the ML605 board (along with the CX4 FMC
module and CX4 loopback connector) in the PCIe slot through the PCI Express x8 or
x16 edge connector. The TRD programmed on the ML605 board has a 4-lane PCIe v2.0
configuration, running at a 5 Gb/s link rate per lane. The PCI Express specification
allows for a smaller lane width Endpoint to be installed into a larger lane width PCIe
connector.

2. Connect the 4-pin connector of the PC system’s 12V ATX power supply to the board
(J25). The external 12V power connector (J60) of the ML605 board should not be used
with the ATX power supply. Power switch SW2 should be in the ON position (away
from the bracket edge of the ML605 board). Figure 2-3 shows the proper 12V power
connection.

X-Ref Target - Figure 2-3

Figure 2-3: ATX 12V Power Connection

UG379_c2_03_091510

J60 SW2J25

http://www.xilinx.com

20 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Chapter 2: Getting Started

3. Make sure the connections are tight and then power on the system. Check the status of
the design on the ML605 LEDs.

a. ML605 LED Status

The design provides status on the GPIO LEDs on the upper left of the ML605
board. When the PC system is powered on and the TRD has successfully
configured, the LED status (bottom to top) should indicate:

- LED 7 - ON if DDR3 initialization completed successfully.

- LED 6 - ON if the XAUI configured GTX transceivers have been placed into
internal loopback. This LED should be OFF when the FMC CX4 loopback
connector is used.

- LED 5 - Flashes if the DDR3 clock (200 MHz) is present

- LED 4 - Flashes if the XAUI clock (156.25 MHz) is present

- LED 3 - ON if lane width is what is expected, else it flashes

- LED 2 - Flashes if the PCIe user clock is present

- LED 1 - ON if the PCIe link is up

Figure 2-4 shows the location of the status LEDs.

4. If 32-bit Fedora 10 is installed on the PC system’s hard disk, boot as a root-privileged
user and continue to step 7.

5. To boot from the Fedora LiveCD provided in the kit, proceed as described here. The
Fedora 10 Live Media is for Intel-compatible PCs. The CD contains a complete,
bootable 32-bit Fedora 10 environment with the proper packages installed for the TRD
demonstration environment. The PC boots from the CD-ROM and logs into a liveuser

X-Ref Target - Figure 2-4

Figure 2-4: GPIO LED Status on Power Up

UG379_c2_04_091510

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 21
UG379 (v1.0) October 5, 2010

Hardware Test Setup

account. This account has kernel development root privileges required to install and
remove device driver modules.

To use the Fedora 10 LiveCD, use a PC machine that supports booting from its CD or
DVD drive. Users might have to adjust BIOS boot order settings to make sure that the
CD-ROM is the first drive in the boot order. To enter the BIOS menu to set the boot
order, press the DEL or F2 key when the system is powered on. Save the changes.

Note: The DEL or F2 key is used by most PC systems to enter the BIOS setup. Some PCs
might have a different way to enter the BIOS setup.

The PC should boot from the CD-ROM. The image in Figure 2-5 is seen on the monitor
during boot up.

X-Ref Target - Figure 2-5

Figure 2-5: Fedora 10 LiveCD Booting

UG379_c2_05_091510

http://www.xilinx.com

22 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Chapter 2: Getting Started

6. Follow the prompts and auto login to the liveuser account.

After testing the Fedora 10 LiveCD environment, users who want to continue
development on Linux can copy it to the computer by clicking the Install to Hard
Drive icon on the desktop.

Note: Be careful when using this command because the hard disk might be repartitioned and all
current data on it could be lost. For assistance, refer to the Fedora Live Media Help [Ref 3].
X-Ref Target - Figure 2-6

Figure 2-6: Fedora 10 LiveCD Automatic Login

UG379_c2_06_091510

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 23
UG379 (v1.0) October 5, 2010

Hardware Test Setup

7. When Fedora 10 boots and login is completed, open a terminal window by selecting
Application → System Tools → Terminal. To find out if the PCIe Endpoint is
detected, at the terminal command line, type:

$ lspci

The lspci command displays the devices in the PCI™ and PCI Express buses of the
PCs. On the bus of the ML605 card slot is the message:

Communication controller: Xilinx Corporation Device 6042

This message confirms that the design programmed into the ML605 has been found by
the BIOS and the Fedora 10 OS. The bus number varies depending on which PC
motherboard and slot is used. Figure 2-7 shows an lspci output for an example
system. Xilinx device 6042 has been found by the BIOS on bus number 2
(02:00.0 - bus:dev.function).

8. The TRD design files are provided on a USB flash drive delivered as a part of the kit.
The contents of the USB drive are also available on the Virtex-6 FPGA Connectivity Kit
web page [Ref 4]. Check for updates to the TRD at the same location. Insert the USB
flash drive into a USB connector of the PC. Allow Fedora 10 to mount the USB device
and an icon will pop up on the desktop. Make sure the USB drive is always
unmounted (right-click on the USB flash drive icon and select Unmount Volume)
before powering down the system or removing the flash drive. File corruption or
kernel crash might occur otherwise.

Double-click on the USB flash drive icon and copy the
v6_pcie_10Gdma_ddr3_xaui_axi folder into any directory.

X-Ref Target - Figure 2-7

Figure 2-7: PCI and PCI Express Bus Devices

UG379_c2_07_091510

http://www.xilinx.com

24 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Chapter 2: Getting Started

9. To set up and run the TRD demonstration, the software driver should be installed on
the PC system. Installation of the software driver involves:

a. Building the kernel objects and the GUI.

b. Inserting the driver modules into the kernel.

After the driver modules are loaded, the application GUI can be invoked. The user can
set parameters through the GUI and run the TRD.

When the user is done running the TRD, the application GUI can be closed and the
drivers can be removed.

A script is provided to execute all the above actions so that the user can quickly start
the TRD.

To run this script, double-click on v6_trd_quickstart in the
v6_pcie_10Gdma_ddr3_xaui_axi folder. The window prompt in Figure 2-8
appears. Click Run in Terminal to proceed.

The application GUI is invoked. Proceed to step 2, page 28 of Using the Application
GUI to set design parameters and run the TRD.

After the TRD has run successfully, close the application GUI. Wait for the drivers to be
removed, and then proceed to step 2, page 36 of Shutting Down the System.

In case issues are encountered or if the user wants to understand driver details, the
user can run the individual steps detailed in the Driver Compilation, Using the
Application GUI, and Shutting Down the System sections.

X-Ref Target - Figure 2-8

Figure 2-8: Load Driver and Launch Application GUI

UG379_c2_08_091510

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 25
UG379 (v1.0) October 5, 2010

Hardware Test Setup

Driver Compilation
1. Compile the driver and insert the kernel modules. Steps are defined for both a user

conversant with command line mode in Linux and for a user preferring button-click
operations.

Command Line Mode using Makefile

Open a terminal window. Navigate to the v6_pcie_10Gdma_ddr3_xaui_axi/
driver folder. To compile and insert the driver, follow these steps at the command
line in the terminal in the driver folder:

a. To clean the area, type:

$ make clean

b. To compile the files and build the kernel objects, type:

$ make

c. To insert the kernel object files, type:

$ make insert

Mouse Click Driven Mode

To compile the driver, double-click on the v6_pcie_10Gdma_ddr3_xaui_axi
folder and follow these steps:

a. Double-click v6_trd_driver_build to clean the area and build the kernel objects
and the GUI. The window prompt shown in Figure 2-9 appears. Click Run in
Terminal to proceed.

X-Ref Target - Figure 2-9

Figure 2-9: Driver and GUI Build

UG379_c2_09_091510

http://www.xilinx.com

26 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Chapter 2: Getting Started

b. Double-click v6_trd_driver_insert to insert the driver modules (xdma_v6, xaui,
and xrawdata_v6) into the kernel. The window prompt shown in Figure 2-10
appears. Click Run in Terminal to proceed.

c. To check the status of the device drivers, at the terminal command line, type:

$ lsmod | more

Look for the drives that are loaded. The xaui and xrawdata_v6 modules
depend on the base xdma_v6 driver. The lsmod command displays Used by on the
xdma_v6 entry as shown in Figure 2-11.

X-Ref Target - Figure 2-10

Figure 2-10: Device Driver Loading

X-Ref Target - Figure 2-11

Figure 2-11: Fedora 10 OS Driver Modules Loaded

UG379_c2_10_091510

UG379_c2_11_091510

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 27
UG379 (v1.0) October 5, 2010

Hardware Test Setup

Using the Application GUI
When the drivers are loaded, the GUI can be invoked to configure sending and receiving of
data. The GUI is also used to observe the collected statistics.

1. GUI compilation: Steps are provided for either a command line user familiar with
Linux or for a user preferring button-click operations.

Command Line Mode using Makefile

To compile and invoke the GUI, navigate to the
v6_pcie_10Gdma_ddr3_xaui_axi/xpmon folder and follow these steps:

a. To clean the area, type:

$ make clean

b. To compile the files, type:

$ make

c. To invoke the GUI, type:

$./xpmon

Mouse Click Driven Mode

Navigate to the v6_pcie_10Gdma_ddr3_xaui_axi folder and double-click
v6_trd_app_gui to start the GUI. The window prompt shown in Figure 2-12 appears.
Click Run in Terminal to proceed.

X-Ref Target - Figure 2-12

Figure 2-12: GUI Invocation

UG379_c2_12_091510

http://www.xilinx.com

28 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Chapter 2: Getting Started

2. GUI walk-through screen-by-screen.

a. Test Setup and Payload Statistics

This screen shows up as soon as the GUI is invoked. It defines the various test
options provided for the XAUI and Raw Data paths.

- For the XAUI path: The GUI allows the minimum and maximum packet size
to be configured in bytes. While executing the test, the software driver builds
packets of random lengths within the specified range. The XAUI path
supports a minimum packet size of 64 bytes, and a maximum packet size of
16,384 bytes.

Data on the XAUI end is looped back. If a CX4 loopback connector is not
available, the user can select Enable Internal GT loopback to loopback data
internally.

Click Start Test to begin packet generation. As packets are generated, the GUI
plots the number of bytes transmitted and received by the Packet DMA for the
XAUI path. Click Stop Test to stop packet generation.

The screen in Figure 2-13 shows the data throughput obtained from the C2S
and S2C DMA engines for the XAUI path.

- For the Raw Data path: The user can input a fixed packet size in bytes. While
executing the test, the software driver builds packets of fixed length. The
packet size can range from 64 bytes to 32,768 bytes. Packet sizes snap to
multiples of 8 on the GUI for this path.

X-Ref Target - Figure 2-13

Figure 2-13: Test Setup and Payload Statistics Screen - XAUI Loopback

UG379_c2_21_091510

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 29
UG379 (v1.0) October 5, 2010

Hardware Test Setup

Select Enable Loopback to loopback the transmit data and send it in the
receive direction. This loopback is done at the application end. Click Start
Test to begin packet generation. As packets are generated, the GUI plots the
number of bytes transmitted and received by the Packet DMA for the Raw
Data path. Click Stop Test to stop packet generation.

The screen in Figure 2-14 shows the data throughput obtained from the C2S
and S2C DMA engines for the Raw Data path with Enable TX->RX Loopback
selected.

Unselect Enable Loopback to select Enable TX Checker or Enable RX
Generator or both.

Select Enable TX Checker and click Start Test to enable the data checker
implemented in hardware. The packets generated by the driver are transferred
via the Packet DMA and are verified at the application end by the checker. The
GUI plots the number of bytes transmitted by the Packet DMA. Click Stop
Test to stop packet generation in the transmit path.

X-Ref Target - Figure 2-14

Figure 2-14: Test Setup and Payload Statistics Screen - Raw Data TX -> RX
Loopback

UG379_c2_22_091510

http://www.xilinx.com

30 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Chapter 2: Getting Started

The screen in Figure 2-15 shows the data throughput obtained from the S2C
DMA engine for the Raw Data path with Enable TX Checker selected.

Select Enable RX Generator and click Start Test to enable the data generator
implemented in hardware. The packets generated are transferred via the
Packet DMA to the host system and are checked by the driver. The GUI plots
the number of bytes received by the Packet DMA. Click Stop Test to stop
packet generation in the receive path.

X-Ref Target - Figure 2-15

Figure 2-15: Test Setup and Payload Statistics Screen - Raw Data TX Only

UG379_c2_23_091510

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 31
UG379 (v1.0) October 5, 2010

Hardware Test Setup

The screen in Figure 2-16 shows the data throughput obtained from the S2C
DMA engine for the Raw Data path with Enable RX Generator selected.

Select Enable TX Checker and Enable RX Generator and click Start Test to
enable both the data checker and the data generator. Packets are generated
and checked in both directions. The GUI plots the number of bytes transmitted
and received by the Packet DMA. Click Stop Test to stop packet generation.

X-Ref Target - Figure 2-16

Figure 2-16: Test Setup and Payload Statistics Screen - Raw Data RX Only

UG379_c2_24_091510

http://www.xilinx.com

32 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Chapter 2: Getting Started

The screen in Figure 2-17 shows the data throughput obtained from the S2C
and C2S DMA engines for the Raw Data path with Enable TX Checker and
Enable RX Generator selected.

Note: If Enable Loopback is selected, then Enable TX Checker and Enable RX
Generator options are not available to the user. If Enable TX Checker is selected, then
the Start Loopback option is not available to the user. If Enable RX Generator is
selected, then the Start Loopback option is not available to the user. The Enable TX
Checker and Enable RX Generator options can be selected simultaneously.

For both XAUI and Raw Data paths, all configuration options should be selected before
clicking on Start Test. Configuration options that a user changes while a test is running
are not taken into account.

X-Ref Target - Figure 2-17

Figure 2-17: Test Setup and Payload Statistics Screen - Raw Data TX and RX

UG379_c2_25_091510

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 33
UG379 (v1.0) October 5, 2010

Hardware Test Setup

b. System Status Screen

Click the System Status tab to view the system status screen (see Figure 2-18).
This screen shows the throughput numbers reported by the DMA engines and the
performance monitor on the transaction layer of the Virtex-6 FPGA Integrated
Block for PCI Express. For more details on the System Status window, refer to
Figure 3-15, page 74.

X-Ref Target - Figure 2-18

Figure 2-18: System Status Screen

UG379_c2_14_091510

http://www.xilinx.com

34 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Chapter 2: Getting Started

c. Transaction Statistics

Click the PCIe Statistics tab to view the PCIe transaction statistics screen. This
screen plots the data bus utilization statistics on the AXI4-Stream interface.

Exercising Application Logic in Hardware through the GUI

XAUI Specific Features

Through the GUI, the software driver allows the configuration of packet length and
enabling of internal loopback.

The software driver generates packets of random length within the specified minimum
and maximum range and transfers packets to the application logic via Packet DMA. The
same size packets are looped back at the application logic end and received by the driver.

The XAUI loopback by default is through the external CX4 loopback connector. The GUI
gives the option of configuring the Virtex-6 FPGA GTX transceivers [Ref 5] used for the
XAUI application to loop back internally, eliminating the need for the CX4 loopback
connector. To enable internal loopback on the GTX transceiver, the driver programs the
XAUI Config register in the hardware design (see XAUI Config (0x9008) in Appendix B).
For information on user application registers, refer to User Application Registers in
Appendix B.

X-Ref Target - Figure 2-19

Figure 2-19: Transaction Statistics

UG379_c2_15_091510

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 35
UG379 (v1.0) October 5, 2010

Hardware Test Setup

Raw Data Specific Features

The software driver allows packet length configuration through the GUI. The software
driver generates packets of fixed length specified by the user and transfers packets to the
application logic via Packet DMA. On the application end, the transmit data can be either
looped back or passed on to the checker. The checker validates the integrity of the data. The
GUI provides the option of selecting Enable TX->RX Loopback or Enable TX Checker.

The packets transferred from the application to the host are of fixed length. The driver
configures this fixed size. The driver programs the packet size specified by the user into the
Packet Length register in the hardware design (see Packet Length (0x9104) in
Appendix B). The receive data source can be either the looped back data or the data
generated by the generator. The GUI provides the option of selecting Enable TX->RX
Loopback or Enable RX Generator.

Based on the user’s selection in the GUI, the driver programs the Enable Checker, Enable
Loopback, and Enable Generator register bits in hardware (see Enable Generator (0x9100)
and Enable Checker or Loopback (0x9108)). For information on user application registers,
refer to User Application Registers in Appendix B. For more information on the GUI, refer
to Software Design, page 71.

Shutting Down the System
Before the system is shut down, these steps should be done:

1. Remove the device drivers. Steps are provided for either a command line user familiar
with Linux or for a user preferring button-click operations.

Command Line Mode using Makefile

To unload the driver modules, navigate to the v6_pcie_10Gdma_ddr3_xaui_axi/
driver folder and execute this command at the command line in the terminal:

$ make remove

Mouse Click Driven Mode

Navigate to the v6_pcie_10Gdma_ddr3_xaui_axi folder. Double-click
v6_trd_driver_remove. The window prompt shown in Figure 2-20 appears. Click
Run in Terminal to proceed.

http://www.xilinx.com

36 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Chapter 2: Getting Started

This step takes a few seconds to free the allocated buffers and remove the three device
drivers. To check that the drivers have been successfully removed, use the lsmod
command in the terminal window again (see Figure 2-21).

2. Unmount the USB flash drive.

3. To shut down the system, select the System → Shutdown option. The system slowly
shuts down processes and ejects the CD for Fedora 10 LiveCD.

Note: Any files copied or icons created are not present at the next Fedora 10 LiveCD boot.

X-Ref Target - Figure 2-20

Figure 2-20: Device Driver Removal

X-Ref Target - Figure 2-21

Figure 2-21: Verification of Device Driver Module Removal

UG379_c2_16_091510

UG379_c2_17_091510

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 37
UG379 (v1.0) October 5, 2010

Hardware Test Setup

Rebuilding the TRD
The configuring_ml605 folder provides the BIT and MCS files for the TRD with the
PCIe link configured as x4 at a 5 Gb/s link rate (Gen2) and x8 at a 2.5 Gb/s link rate (Gen1).
They can be used to reprogram the ML605 board. Programming the ML605 board with the
design, where the PCIe link is configured as x8 at a 2.5 Gb/s link rate requires driver
changes for the TRD to run successfully. Refer to Hardware and Software Modifications,
page 88 for details.

The designs can also be re-implemented using ISE software. Before running any command
line scripts, refer to the “Platform Specific Instructions” section in ISE Design Suite:
Installation, Licensing, and Release Notes (http://www.xilinx.com/support/documentation)
to learn how to set the appropriate environment variables for the operating system. All
scripts mentioned in this user guide assume the XILINX environment variables have been
set.

Note: The development machine does not have to be the hardware test machine with the PCIe slots
used to run the TRD.

Copy the v6_pcie_10Gdma_ddr3_xaui_axi files to the PC with the ISE software
installed.

The LogiCORE™ IP blocks required for the TRD are shipped as a part of the package.
These cores and netlists are located in the v6_pcie_10Gdma_ddr3_xaui_axi/
design/ip_cores directory:

• pcie

• xaui

MIG [Ref 6] is delivered through the CORE Generator™ tool in the ISE software.

Open a terminal window (on Linux) or a DOS command (on Windows) and navigate to the
v6_pcie_10Gdma_ddr3_xaui_axi/design/ip_cores/mig directory. Type this
command on the command line:

$ coregen -b mig.xco -p coregen.cgc

Additionally, a golden set of XCO files are also provided under the
v6_pcie_10Gdma_ddr3_xaui_axi/design/ip_cores/reference/xco_files
directory so that the cores can be regenerated, if desired.

Generating the MIG core overwrites the provided mig.xco file. To regenerate the core,
copy mig.xco and mig.prj from the design/ip_cores/reference/xco_files
directory.

Implementing the Design Using Command Line Options
Navigate to the v6_pcie_10Gdma_ddr3_xaui_axi/design/implement directory.

At the command line of a terminal window (on Linux) or DOS command (on Windows),
use one of these commands to invoke the ISE software tools and produce a BIT file and an
MCS file in the results folder for downloading to the ML605 board:

$ source implement.sh x4 gen2 (for Linux)

$ source implement.sh x8 gen1 (for Linux)

$ implement.bat -lanemode x4gen2 (for Windows)

$ implement.bat -lanemode x8gen1 (for Windows)

To view other options available through the implement script, run these commands:

http://www.xilinx.com
http://www.xilinx.com/support/documentation

38 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Chapter 2: Getting Started

$ source implement.sh -help (for Linux)

$ implement.bat -help (for Windows)

Implementing the Design Using ISE Project Navigator
For Project Navigator flow, navigate to v6_pcie_10Gdma_ddr3_xaui_axi/design/
implement/proj_nav_flow_x4gen2 on a command window.

Run this script to invoke the ISE software GUI and load the design with PCIe configured as
a 4-lane running at 5 Gb/s:

$ launch_ise_x4gen2.bat

Double-click Generate Programming File in the processes window to generate a BIT file.
Close the ISE software GUI.

Run this script at the command prompt to generate an MCS file:

$ genprom.bat

Navigate to v6_pcie_10Gdma_ddr3_xaui_axi/design/implement/
proj_nav_flow_x8gen1 on a command window.

Run this script to invoke the ISE software GUI and load the design with PCIe configured as
an 8-lane running at 2.5 Gb/s:

$ launch_ise_x8gen1.bat

Double-click Generate Programming File in the processes window to generate a BIT file.
Close the ISE software GUI.

Run this script at the command prompt to generate an MCS file:

$ genprom.bat

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 39
UG379 (v1.0) October 5, 2010

Hardware Test Setup

Reprogramming the TRD
The ML605 board is shipped preprogrammed with the TRD, where the PCIe link is
configured as x4 at a 5 Gb/s link rate. This procedure shows how to return the ML605
board to its original condition after another user has programmed it for a different
operation or as a training aid for users to program their boards. The PCIe operation
requires the use of the x128 Flash mode of the ML605 board. This is the only configuration
option that meets the strict programming time of PCI Express. Refer to the Virtex-6 FPGA
Integrated Block for PCI Express User Guide [Ref 7] for more information on PCIe
configuration time requirements.

Check the ML605 board switch and jumper settings as shown in Table 2-2, page 17 and
Figure 2-1, page 16. Connect the mini USB cable to the J22 mini USB connector and use the
wall power adapter to provide 12V power to the 6-pin connector J60.

Copy the v6_pcie_10Gdma_ddr3_xaui_axi files to the PC with Xilinx programming
tools or ISE Design Suite installed. Navigate to the v6_pcie_10Gdma_ddr3_xaui_axi/
configuring_ml605 directory. Run the ml605program.bat script at the command
prompt to invoke the Xilinx iMPACT tool with the options specified in the
ml605program.cmd file.

X-Ref Target - Figure 2-22

Figure 2-22: Cable Installation for ML605 Board Programming

UG379_c2_18_091510

J60

J22

http://www.xilinx.com

40 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Chapter 2: Getting Started

This operation takes approximately 600 to 800 seconds. When complete, the “Programmed
Successfully” message is displayed as shown in Figure 2-23. Remove the power connector
and carefully remove the mini USB cable. The Virtex-6 FPGA TRD is now programmed
into the x128 flash and will automatically configure at power up.

If the design has been rebuilt according to the instructions in Rebuilding the TRD, navigate
to the v6_pcie_10Gdma_ddr3_xaui_axi/design/implement directory. The BIT and
MCS files generated during implementation and the scripts to program the ML605 are
located in the results directory. Navigate to the results directory and run the
ml605program.bat script at the command prompt to configure the ML605 board with
the design built in the implement folder:

$ ml605program.bat

Simulation
This section details the out-of-box simulation environment provided with the design. This
simulation environment provides the user with a feel for the general functionality of the
design. The simulation environment shows basic traffic movement end-to-end.

Overview
The out-of-box simulation environment consists of the design under test (DUT) connected
to the Virtex-6 FPGA Root Port Model for PCI Express. This simulation environment
demonstrates the basic functionality of the TRD through various test cases. The out-of-box
simulation environment covers these traffic flows:

• XAUI Transmit: XAUI traffic from the Root Port Model through the Endpoint PCIe,
Packet DMA, and DDR3 memory to the XAUI LogiCORE IP block

• XAUI Receive: XAUI traffic from the XAUI LogiCORE IP block through the DDR3
memory, Packet DMA, and Endpoint PCIe to the Root Port Model

• Raw Data Transmit: Raw data traffic from the Root Port Model through the Endpoint
PCIe, Packet DMA, and DDR3 memory to the Loopback module

X-Ref Target - Figure 2-23

Figure 2-23: ML605 Flash Programming on Windows

UG379_c2_19_091510

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 41
UG379 (v1.0) October 5, 2010

Simulation

• Raw Data Receive: Raw data traffic from the Loopback module through the DDR3
memory, Packet DMA, and Endpoint PCIe to the Root Port Model

The Root Port Model for PCI Express is a limited test bench environment that provides a
test program interface. The purpose of the Root Port Model is to provide a source
mechanism for generating downstream PCI Express traffic to simulate the DUT and a
destination mechanism for receiving upstream PCI Express traffic from the DUT in a
simulation environment.

The out-of-box simulation environment (see Figure 2-24) consists of:

• Root Port Model for PCI Express connected to the DUT

• Transaction Layer Packet (TLP) generation tasks for various programming operations

• Test cases to generate different traffic scenarios

The simulation environment uses the Micron DDR3 memory model and connects the
XAUI interface in serial loopback mode. This simulation environment is built on top of the
simulation environment generated by the Virtex-6 FPGA Integrated Block for PCI Express.

The simulation environment creates log files during simulation. These log files contain a
detailed record of every TLP that was received and transmitted by the Root Port Model.

Simulating the Design
The out-of-box simulation environment is built for the ModelSim simulator. To run the
simulation, execute one of the listed scripts at the command prompt. Make sure to compile
the required libraries and set the environment variables as per the ModelSim simulator
before running the script. Refer to the Synthesis and Simulation Design Guide [Ref 8], which
provides information on how to run simulations with different simulators.

• TRD with the PCIe link configured as x4 at 5 Gb/s: simulate_mti_x4gen2 found
in the v6_pcie_10Gdma_ddr3_xaui_axi/sim/mti directory

• TRD with the PCIe link configured as x8 at 2.5 Gb/s: simulate_mti_x8gen1 found
in the v6_pcie_10Gdma_ddr3_xaui_axi/sim/mti directory

Note: Before running the simulation script, make sure to generate the MIG core through the
CORE Generator tool, as described in Rebuilding the TRD, page 37.

X-Ref Target - Figure 2-24

Figure 2-24: Out-of-Box Simulation Overview

Test

Command Line or
User-Defined Parameters

x4 Link
for

PCI Express

XAUI
Serial

Loopback

DDR3
Memory
Model

Virtex-6 FPGA
Connectivity Kit

TRD

Virtex-6 FPGA
Root Port
Model for

PCI Express

UG379_c2_20_091510

Tasks For
TLP Generation

http://www.xilinx.com

42 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Chapter 2: Getting Started

User-Controlled Macros

The simulation environment allows the user to define macros that control DUT
configuration. These values can be changed in the user_defines.v file.

Test Selection

The test environment generates packets of random lengths for the XAUI path and builds
headers as per the XAUI packet defined for the Virtex-6 FPGA Connectivity TRD. Refer to
XAUI Packet Interface, page 55 for more details. For the Raw Data path, fixed length
packets of 1024 bytes are generated.

Table 2-4 describes the various tests provided by the out-of-box simulation environment.

The name of the test to be run can be specified on the command line while invoking
relevant simulators in the provided scripts.

By default, the simulation script file specifies the basic test to be run using this syntax:

"+TESTNAME=basic_test"

The test selection can be changed by specifying a different test case as specified in
Table 2-4.

Table 2-3: User-Controlled Macro Descriptions

Macro Name Default Value Description

CH0 Defined Enables XAUI path initialization and traffic flow.

CH1 Defined Enables Raw Data path initialization and traffic
flow.

LEGACY_INTR Not Defined PCIe legacy interrupts are enabled when defined.
When not defined, MSI is enabled (default).

DETAILED_LOG Not Defined Enables a detailed log of each transaction.

Table 2-4: Test Description

Test Name Description

basic_test Basic Test
This test runs six packets for each DMA channel. One buffer descriptor
defines one full packet in this test.

packet_spanning Packet Spanning Multiple Descriptors
This test spans a packet across two buffer descriptors. It runs six packets
for each DMA channel.

test_interrupts Interrupt Test
This test sets the interrupt bit in the descriptor and enables the interrupt
registers. This test also shows interrupt handling by acknowledging
relevant registers.

dma_disable DMA Disable Test
This test shows the DMA disable operation sequence on a DMA channel.

break_loop Enable checker and generator in hardware and disable loopback.
This test shows the receive path running independent of the transmit
path. The data source for the receive path is the generator, not the looped
back transmit data.

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 43
UG379 (v1.0) October 5, 2010

Chapter 3

Functional Description

This chapter describes the hardware design and software driver components. It also
describes how the data and control information flow through the various connected IPs.

Hardware Design
Figure 3-1 provides a detailed block level overview of the TRD. The base system
components and the applications components built around it, enable packet flow (XAUI
path) and streaming flow (Raw Data path) to/from the host memory at high data rates.

X-Ref Target - Figure 3-1

Figure 3-1: Detailed Design Block Diagram

Packet
DMA

Virtual FIFO

USER_APP0-XAUI
(Network Application)

USER_APP1-Raw Data
(Data Streaming Application)

C
2S

S
2C

C
2S

S
2C

x4
 P

C
Ie

 L
in

k
@

 5
.0

 G
b/

s
or

x8
 P

C
Ie

 L
in

k
@

 2
.5

 G
b/

s

Third Party IP FPGA Logic

64
-b

it
A

X
I4

-S
tr

ea
m

 In
te

rf
ac

e
@

 2
50

 M
H

z Register
Interface

64
-b

it
@

25
0

M
H

z
64

-b
it

@
25

0
M

H
z

64
-b

it
@

25
0

M
H

z

64
-b

it
@

15
6.

25
 M

H
z

64
-b

it
@

25
0

M
H

z

VF CH3
Read
Port

VF CH2
Write
Port

VF CH1
Read
Port

VF CH0
Write
Port

64-bit @
250 MHz

25
6-

bi
t @

20
0

M
H

z

Control S2C Variable
Header and Data CRC

Insertion

Control C2S Variable
Header CRC Check and
Data CRC Generation

Common
Registers

Performance Monitor
for PCI Express

Native
Interface of

DDR3
Memory

Controller

DDR3
64-bit @
400 MHz

Control S2C Static

Control C2S Static

DMA
Channel 1

DMA
Channel 0

G
T

X
 T

ra
ns

ce
iv

er
s

x4
 @

 5
 G

b/
s

/ x
8

@
 2

.5
 G

b/
s

In
te

gr
at

ed
 B

lo
ck

 fo
r

 P
C

I E
xp

re
ss

, v
2.

0

W
ra

pp
er

 fo
r

P
C

I E
xp

re
ss

Xilinx IPIntegrated Blocks

VF CH3
Write
Port

VF CH2
Read
Port

VF CH1
Write
Port

VF CH0
Read
Port

XGMII
TX

XGMII
RX

64
-b

it
@

25
0

M
H

z

XAUI Serial

UG379_c3_01_092710

G
T

X
Tr

an
sc

ei
ve

rs

R
aw

 D
at

a
Lo

op
ba

ck

Generator

Checker

http://www.xilinx.com

44 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Chapter 3: Functional Description

The hardware architecture is detailed under these sections:

• Base System Components, describing the Virtex®-6 FPGA Integrated Block for
PCI Express, DMA, and Virtual FIFO

• Application Components, describing the XAUI and Raw Data paths, and the glue
logic developed to interface with the IPs and base components

Base System Components
PCI Express® is a high-speed serial protocol that allows transfer of data between host
systems and Endpoint cards. To efficiently use the processor bandwidth, a bus mastering
scatter-gather DMA controller is used to push and pull data from the system memory. All
data to and from the system is stored in the DDR3 memory through a Virtual FIFO
abstraction layer before interacting with the user application.

PCI Express

The Virtex-6 FPGA Integrated Block for PCI Express provides a wrapper around the
integrated block in the FPGA. The integrated block is compliant with the PCI Express v2.0
specification. It supports x1, x2, x4, x8 lane widths operating at 2.5 Gb/s (Gen1) or 5 Gb/s
(Gen2) line rate per direction. The wrapper combines the Virtex-6 FPGA Integrated Block
for PCI Express with transceivers, clocking, and reset logic to provide an industry standard
AXI4-Stream interface as the user interface.

Note: Initially, the Virtex-6 FPGA Integrated Block for PCI Express provided the TRN (transaction)
interface as the only user interface. It now supports both the TRN interface and the AXI4-Stream
interface. Appendix C, Migration Considerations of UG517, Virtex-6 FPGA Integrated Block for PCI
Express explains the changes involved to migrate from the TRN interface to the AXI4-Stream
interface.

For details on the Virtex-6 FPGA Integrated Block for PCI Express, refer to the product
page on the Xilinx website [Ref 7].

Performance Monitor for PCI Express

The monitor block snoops for PCIe® transactions on the AXI4-Stream interface ports and
keeps track of utilization. A timer within the block counts out the clocks until one second
has elapsed, during which time several counters have collected data about the usage of the
transaction layer. Table 3-1 shows the ports on the monitor.

Table 3-1: Monitor Ports for PCI Express

Port Name Type Description

reset Input Synchronous reset

clk Input 250 MHz clock

Transmit Ports on the AXI4-Stream Interface

s_axis_tx_tdata[63:0] Input Data to be transmitted via PCIe link

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/v6_pcie_ug517.pdf

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 45
UG379 (v1.0) October 5, 2010

Hardware Design

s_axis_tx_tstrb[7:0] Input The transmit data strobe is used to
determine which data bytes are valid on
s_axis_tx_tdata during a given beat (this
signal is valid only if s_axis_tx_tvalid and
s_axis_tx_tready are both asserted).

Bit 0 corresponds to the least significant
byte on s_axis_tx_tdata and bit 7
corresponds to the most significant byte,
for example:

s_axis_tx_tstrb[0] == 1b,
s_axis_tx_tdata[7:0] is valid.

s_axit_tx_tstrb[7] == 0b,
s_axis_tx_tdata[63:56] is not valid.

When s_axis tx_tlast is not asserted, the
only valid value is 0xFF.

When s_axis_tx_tlast is asserted, valid
values are 0x0F and 0xFF.

s_axis_tx_tlast Input End of frame indicator on transmit
packets. Valid only along with assertion of
s_axis_tx_tvalid.

s_axis_tx_tvalid Input Source ready to provide transmit data.
Indicates that the DMA is presenting
valid data on s_axis_tx_tdata.

s_axis_tx_tuser[3] (src_dsc) Input Source discontinue on a transmit packet.
Can be asserted any time starting on the
first cycle after SOF. s_axis_tx_tlast
should be asserted along with
s_axis_tx_tuser[3] assertion.

s_axis_tx_tready Input Destination ready for transmit. Indicates
that the core is ready to accept data on
s_axis_tx_tdata. The simultaneous
assertion of s_axis_tx_tvalid and
s_axis_tx_tready marks the successful
transfer of one data beat on
s_axis_tx_tdata

Receive Ports on the AXI4-Stream Interface

m_axis_rx_tdata[63:0] Input Data received on the PCIe link. Valid only
if m_axis_rx_tvalid is also asserted.

Table 3-1: Monitor Ports for PCI Express (Cont’d)

Port Name Type Description

http://www.xilinx.com

46 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Chapter 3: Functional Description

Note: Start of frame is derived based on the signal values of source valid, destination ready and end
of frame indicator. The clock cycle after end of frame is deasserted and source valid is asserted
indicates start of a new frame.

Four counters collect information on the transactions on the AXI4-Stream interface:

• TX Byte Count. This counter counts bytes transferred when the s_axis_tx_tvalid and
s_axis_tx_tready signals are asserted between the Packet DMA and the Virtex-6 FPGA
Integrated Block for PCI Express. This value indicates the raw utilization of the PCIe
transaction layer in the transmit direction, including overhead such as headers and
non-payload data such as register access.

• RX Byte Count. This counter counts bytes transferred when the m_axis_rx_tvalid and
m_axis_rx_tready signals are asserted between the Packet DMA and the Virtex-6
FPGA Integrated Block for PCI Express. This value indicates the raw utilization of the
PCIe transaction layer in the receive direction, including overhead such as headers
and non-payload data such as register access.

m_axis_rx_tstrb[7:0] Input The receive data strobe is used to
determine which data bytes are valid on
m_axis_rx_tdata[63:0] during a given beat
(this signal is valid only when
m_axis_rx_tvalid and m_axis_rx_tready
are both asserted).

Bit 0 corresponds to the least significant
byte on m_axis_rx_tdata and bit 7
corresponds to the most significant byte.

When m_axis rx_tlast is not asserted, this
signal can be ignored.

When m_axis_rx_tlast is asserted, valid
values are 0x0F and 0xFF.

m_axis_rx_tlast Input End of frame indicator for received
packet. Valid only if m_axis_rx_tvalid is
also asserted.

m_axis_rx_tvalid Input Source ready to provide receive data.
Indicates that the core is presenting valid
data on m_axis_rx_tdata.

m_axis_rx_tready Input Destination ready for receive. Indicates
that the DMA is ready to accept data on
m_axis_rx_tdata. The simultaneous
assertion of m_axis_rx_tvalid and
m_axis_rx_tready marks the successful
transfer of one data beat on
m_axis_rx_tdata.

Byte Count Ports

tx_byte_count[31:0] Output Raw transmit byte count

rx_byte_count[31:0] Output Raw receive byte count

tx_payload_count[31:0] Output Transmit payload byte count

rx_payload_count[31:0] Output Receive payload byte count

Table 3-1: Monitor Ports for PCI Express (Cont’d)

Port Name Type Description

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 47
UG379 (v1.0) October 5, 2010

Hardware Design

• TX Payload Count. This counter counts all memory writes and completions in the
transmit direction from the Packet DMA to the host. This value indicates how much
traffic on the PCIe transaction layer is from data, which includes the DMA buffer
descriptor updates, completions for register reads, and the packet data moving from
the user application to the host.

• RX Payload Count. This counter counts all memory writes and completions in the
receive direction from the host to the DMA. This value indicates how much traffic on
the PCIe transaction layer is from data, which includes the host writing to internal
registers in the hardware design, completions for buffer description fetches, and the
packet data moving from the host to user application.

The actual packet payload by itself is not reported by the performance monitor. This value
can be read from the DMA register space.

The method of taking performance snapshots is similar to the Northwest Logic DMA
performance monitor (refer to the DMA Back Core User Guide [Ref 9]). The byte counts are
truncated to a four-byte resolution, and the last two bits of the register indicate the
sampling period. The last two bits transition every second from 00 to 01 to 10 to 11. The
software polls the performance register every second. If the sampling bits are the same as
the previous read, then the software needs to discard the second read and try again. When
the one-second timer expires, the new byte counts are loaded into the registers,
overwriting the previous values.

Scatter-Gather Packet DMA

The scatter-gather Packet DMA IP is provided by Northwest Logic, a Xilinx third-party
alliance. The Packet DMA is configured to support simultaneous operation of two user
applications. This involves four DMA channels: two system-to-card (S2C) or transmit
channels and two card-to-system (C2S) or receive channels.

The DMA controller requires a 64 KB register space mapped to BAR0. All DMA registers
are mapped to BAR0 from 0x0000 to 0x7FFF. The address range from 0x8000 to 0xFFFF
is available to the user via this interface. Each DMA channel has its own set of independent
registers. Registers specific to this TRD are described in Appendix B, Register
Descriptions. Further details of various registers can be obtained from the Northwest Logic
DMA Back-End Core User Guide [Ref 9].

The front end of DMA interfaces to the AXI4-Stream interface. The back end of the DMA
provides a packetized interface. Control logic for each DMA channel, specific to the user
application, is implemented so that the DMA back end can interface with the Virtual FIFO.

Scatter-Gather Operation

The term scatter gather refers to the ability to write packet data segments into different
memory locations and gather data segments from different memory locations to build a
packet. This allows for efficient memory utilization because a packet does not need to be
stored in physically contiguous locations.

Scatter gather requires a common memory resident data structure that holds the list of
DMA operations to be performed. DMA operations are organized as a linked list of buffer
descriptors.

A buffer descriptor describes a data buffer. Each buffer descriptor is 8 doublewords in size
(a doubleword is 4 bytes), which is a total of 32 bytes. The DMA operation implements
buffer descriptor chaining, which allows a packet to be described by more than one buffer
descriptor.

http://www.xilinx.com

48 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Chapter 3: Functional Description

Figure 3-2 shows the buffer descriptor layout for S2C and C2S directions.

The descriptor fields are described in Table 3-2.

X-Ref Target - Figure 3-2

Figure 3-2: Buffer Descriptor Layout

Table 3-2: Buffer Descriptor Fields

Descriptor Fields Functional Description

SOP Start of Packet. In the S2C direction, this field indicates to the
DMA the start of a new packet. In the C2S direction, the DMA
updates this field to indicate the start of a new packet to
software.

EOP End of Packet. In the S2C direction, this field indicates to the
DMA the end of current packet. In the C2S direction, the DMA
updates this field to indicate the end of the current packet to
software.

ERR Error. This field is set by the DMA on descriptor update to
indicate an error while executing that descriptor.

SHT Short. This field is set when the descriptor completes with a byte
count less than the requested byte count. This is common for
C2S descriptors having EOP status set but should be analyzed
when set for S2C descriptors.

CMP Complete. This field is updated by the DMA to indicate to
software the completion of operation associated with that
descriptor.

Hi 0 User Status High is zero. This field is applicable only to C2S
descriptors. It is set to indicate Users Status [63:32] = 0.

L 0 User Status Low is zero. This field is applicable only to C2S
descriptors. It is set to indicate User Status [31:0] = 0.

User Control [31:0]

Rsvd ByteCount[19:0]00
C
M
P

S
H
T

E
R
R

000

Rsvd ByteCount[19:0]000 lrq
C

lrq
Er0

E
O
P

S
O
P

User Control [63:32]

Card Address – (Reserved)

System Address [31:0]

System Address [63:32]

NextDescPtr[31:5], 5’b00000

S2C Buffer Descriptor C2S Buffer Descriptor

User Status [31:0]

Rsvd ByteCount[19:0]
L
0

Hi
0

C
M
P

S
H
T

E
R
R

0
E
O
P

S
O
P

Rsvd
RsvdByteCount

[19:0]000 lrq
C

lrq
Er000

User Status [63:32]

Card Address – (Reserved)

System Address [31:0]

UG379_c3_02_091510

System Address [63:32]

NextDescPtr[31:5], 5’b00000

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 49
UG379 (v1.0) October 5, 2010

Hardware Design

Packet Transmission

The software driver prepares a ring of descriptors in system memory and writes the start
and end addresses of the ring to the relevant S2C channel registers of the DMA. When
enabled, the DMA fetches the descriptor followed by the data buffer it points to. Data is
fetched from the host memory and made available to the user application through the
DMA S2C streaming interface.

The packet interface signals (for example, the start of packet and the end of packet) are
built from the control fields in the descriptor. The information present in the user control
field is made available during s2c_sop. The reference design does not use the user control
field.

To indicate data fetch completion corresponding to a particular descriptor, the DMA
engine updates the first doubleword of the descriptor by setting the complete bit of the
'Status and Byte Count field to 1. The software driver analyzes the complete bit field to free
up the buffer memory and reuse it for later transmit operations.

Irq Er Interrupt On Error. This bit indicates the DMA is to issue an
interrupt when the descriptor results in an error.

Irq C Interrupt on Completion. This bit indicates the DMA is to issue
an interrupt when the operation associated with the descriptor
is completed.

ByteCount[19:0] Byte Count. In the S2C direction, this field indicates the number
of bytes queued up for transmission to the DMA. In the C2S
direction, the DMA updates this field to indicate the byte count
updated in system memory.

RsvdByteCount[19:0] Reserved Byte Count. In the S2C direction, this field is
equivalent to the number of bytes queued up for transmission.
In the C2S direction, this field indicates the data buffer size
allocated. The DMA might not utilize the entire buffer
depending on the packet size.

User Control/User Status User Control or Status Field (the use of this field is optional). In
the S2C direction, this field transports application-specific data
to the DMA. Setting of this field is not required by the TRD. In
the C2S direction, the DMA can update application-specific data
in this field.

Card Address Card Address Field. This field is not used for Packet DMA.

System Address System Address. This field defines the system memory address
where the buffer is to be fetched from or written to.

NextDescPtr Next Descriptor Pointer. This field points to the next descriptor
in the linked list. All descriptors are 32-byte aligned.

Table 3-2: Buffer Descriptor Fields (Cont’d)

Descriptor Fields Functional Description

http://www.xilinx.com

50 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Chapter 3: Functional Description

Figure 3-3 shows the system to card data transfer.

Packet Reception

The software driver prepares a ring of descriptors with each descriptor pointing to an
empty buffer. It then programs the start and end addresses of the ring in the relevant C2S
DMA channel registers. The DMA reads the descriptors and waits for the user application
to provide data on the C2S streaming interface. When the user application provides data,
the DMA writes the data into one or more empty data buffers pointed to by the prefetched
descriptors. When a packet fragment is written to host memory, the DMA updates the
status fields of the descriptor. The user status signal on the C2S interface is valid only
during c2s_eop. Hence, when updating the EOP field, the DMA engine also needs to
update the User Status fields of the descriptor. In all other cases, the DMA updates only the
Status and Byte Count field. The completed bit in the updated status field indicates to the
software driver that data was received from the user application. When the software driver
processes the data, it frees the buffer and reuses it for later receive operations.

X-Ref Target - Figure 3-3

Figure 3-3: Data Transfer from System to Card

Complete = 1

clk

s2c_sop

s2c_user_control

s2c_data

s2c_src_rdy

s2c_dst_rdy

s2c_eop

Data
Buffer

SOP = 1

Next Descriptor

System Address [63:32]

System Address [31:0]

Control Flags and Count

Card Address

User Control [63:32]

User Control [31:0]

Status and ByteCount

Next Descriptor

System Address [63:32]

System Address [31:0]

Control Flags and Count

Card Address

User Control [63:32]

User Control [31:0]

Status and ByteCount

Complete = 1

UG379_c3_03_091510

EOP = 1

Data
Buffer

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 51
UG379 (v1.0) October 5, 2010

Hardware Design

Figure 3-4 shows the card to system data transfer.

The software periodically updates the end address register on the transmit and receive
DMA channels to ensure uninterrupted data flow to and from the DMA.

X-Ref Target - Figure 3-4

Figure 3-4: Data Transfer from Card to System

Complete = 1

clk

c2s_sop

c2s_user_status

c2s_data

c2s_src_rdy

c2s_dst_rdy

c2s_eop

Data
Buffer

SOP = 1

Next Descriptor

System Address [63:32]

System Address [31:0]

Control Flags and Count

Card Address

User Status [63:32]

User Status [31:0]

Status and ByteCount

Next Descriptor

System Address [63:32]

System Address [31:0]

Control Flags and Count

Card Address

User Status [63:32]

User Status [31:0]

Status and ByteCount

Complete = 1

UG379_c3_04_091510

EOP = 1

Data
Buffer

http://www.xilinx.com

52 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Chapter 3: Functional Description

Virtual FIFO

The Virtual FIFO is built around the native interface of the Virtex-6 FPGA memory
controller. The core generated through the Xilinx® Memory Interface Generator (MIG) is
illustrated in Figure 3-5. The core provides a user interface block that handshakes with the
memory controller block. The Virtual FIFO strips the user interface block and directly
accesses the native interface of the memory controller. The generic user interface provides
an alternative to the native interface by presenting a flat address space and buffering read
and write data. Building a FIFO around this interface increases latency and gate count. The
Virtual FIFO layer performs some of the same functions as the user interface block, but it is
designed for higher performance and efficiency for the TRD.

The abstraction layer turns the external DDR3 memory into a multiport FIFO by providing
the read and write addresses to the Memory Controller in a manner that provides highly
efficient usage of the DDR3 memory device. The DDR3 device used for this design has a
64-bit interface running at a 400 MHz double data rate (DDR), or 800 Mb/s.

By using the Virtual FIFO module, the complexities of the Virtex-6 FPGA memory
controller are hidden from the user. The Virtual FIFO handles packing the data into 64-byte
segments, and generating addresses that efficiently manage the DDR3 row, column, and
bank requirements.

Because the TRD supports two user applications, the Virtual FIFO is configured with four
channels (see Figure 3-6): two VF channels for DMA (VF Channel 0 and VF Channel 2) to
push data and user applications to pull data and two VF channels for user applications (VF
Channel 1 and VF Channel 3) to push data and DMA to pull data. The Virtual FIFO
interfaces with a set of application-specific custom RTL blocks to move data in the S2C and
C2S directions.

Each VF channel has a read port and a write port. Therefore, there are eight ports (four read
and four write), each trying to access the same 64-bit bidirectional data bus of the DDR3
device. When only one application is running, the two VF channels dedicated to that
application should be able to operate at maximum throughput. When both applications
are operating, the bandwidth is split between them, but not necessarily evenly. At
synthesis time, the amount of time spent on each VF channel can be set using the DWELL
parameter. A DWELL value of 7 means that the logic spends 27 or 128 cycles on that VF
channel before moving to the next VF channel. A DWELL value of 0 means the Virtual
FIFO spends 20 or 1 cycle on that VF channel before moving to the next one. In this manner,
channels requiring higher bandwidth can be guaranteed to get a larger slice of the
bandwidth.

X-Ref Target - Figure 3-5

Figure 3-5: DDR3 SDRAM Memory Controller Delivered by MIG

User
Design

User
Interface

Block

Memory
Controller

Physical
Layer

DDR3
SDRAM

IOB

User
Interface

Native
Interface

DFI
Interface

Physical
Interface

Virtex-6 FPGA
Virtex-6 FPGA Memory Interface Solution

UG379_c3_05_091510

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 53
UG379 (v1.0) October 5, 2010

Hardware Design

The Virtual FIFO provides clock domain crossing, and store and forward capability for
many large packets. Direct read and write transactions to the DDR3 memory is not efficient
thus the Virtual FIFO implements block RAM input and output buffers on each port. This
allows long read and write streams to be assembled, greatly improving the memory
controller efficiency. Also with the direct memory access, the response time from the
memory controller is not bounded. The input/output buffers can advertise available space
and data at a guaranteed rate. The DDR3 FIFO must keep these buffers filled to keep the
applications running at full performance.

Table 3-3 lists the ports on the Virtual FIFO. In the S2C direction, the write ports operate at
250 MHz, and the read ports operate at 156.25 MHz (XAUI) and 250 MHz (Raw Data). In
the C2S direction, the write ports operate at 156.25 MHz (XAUI) and 250 MHz (Raw Data),
and the read ports operate at 250 MHz. Each channel of the FIFO has the ports defined in
Table 3-3.

X-Ref Target - Figure 3-6

Figure 3-6: Virtual FIFO Block Diagram with Connections to the System

VF Channel 0 VF Channel 1 VF Channel 2 VF Channel 3

Virtual
FIFO

Control +
CRC

64 64

Input
FIFO1

Output
FIFO2

Input
FIFO3

Output
FIFO4

Output
FIFO1

Input
FIFO2

Output
FIFO3

Input
FIFO4

Wr

64
Wr

64

64

UG379_c3_06_091510

256

256

Wr

Rd

64
Rd

64
Rd

64 64
Wr Rd

Control +
CRC

Control Control
Block RAM
Output Buffer

Block RAM
Input Buffer

M
em

or
y

C
on

tr
ol

le
r

XGMII TX
Logic

XGMII RX
Logic

Raw Data Loopback

Table 3-3: Virtual FIFO (Per Channel) Ports

Port Name Type Description

Virtual FIFO Write Interface

wr_rdy[14:0] Output Space left in the Virtual FIFO (in bytes)

din[63:0] Input Data to be written into the Virtual FIFO

wr[3:0] Input Write enable to the Virtual FIFO

clk_in Input Write clock

rst_in Input Synchronous reset in clk_in domain

http://www.xilinx.com

54 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Chapter 3: Functional Description

The write and read enable signals are four bits wide to allow for partial data to be written.
However, in the Virtex-6 FPGA Connectivity TRD, data is always written eight bytes at a
time, so the lower three bits are all tied to GND.

Figure 3-7 shows the timing relationship on the read and write ports of the Virtual FIFO.

Table 3-4 shows the ports shared across the different VF channels.

Virtual FIFO Read Interface

rd_rdy[14:0] Output Bytes available to be read from the Virtual FIFO

dout[63:0] Output Read data from Virtual FIFO

rd[3:0] Input Read enable to the Virtual FIFO

clk_out Input Read clock

rst_out Input Synchronous reset in clk_out domain

Table 3-3: Virtual FIFO (Per Channel) Ports (Cont’d)

Port Name Type Description

X-Ref Target - Figure 3-7

Figure 3-7: Timing Diagram for the Virtual FIFO Block

clk_in

din 0000000000000000

74f23a800000204 0f0e0d0c.. 17161514.. 1f1e1d1c.. 27262524.. 2f2e2d2c.. 37363534.. 3f3e3d3c.. 47464544.. 4f4e4d4c.. 57565554.. 5f

4000

0208 0200 01f8 01f0 01e8 01e0 01d8 01d0 01c8 01c0 01b8 0

0 8

0 8

3ff8 3ff0 3fe8 3fd83fe0

74f235a8000...0f0e0d0c0b0.. 1716151413.. 1f1e1d1c1b1.. 2726252423.. 2f2e2d2c2b2.. 3736353

wr_rdy

dout

wr

rd_rdy

rd

clk_out

UG379_c3_07_091510

Table 3-4: Common Ports on the Virtual FIFO

Port Name Type Description

rst_backend Input Resets the Virtual FIFO backend logic

rst_mc Input Resets the DDR3 Memory Controller

sys_clk_n Input 200 MHz differential clock

sys_clk_p Input 200 MHz differential clock

clk_be Output Backend clock (200 MHz) from the MMCM

dfi_init_complete Output Indicates initialization is done

DDR3 Memory Interface

ddr3_addr[12:0] Output PHY signal

ddr3_ba[2:0] Output PHY signal

ddr3_cas_n Output PHY signal

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 55
UG379 (v1.0) October 5, 2010

Hardware Design

Application Components
This section describes the blocks that interface with the base components to support XAUI
and Raw Data applications. It also describes the flow of data and control information end
to end.

XAUI Path

The XAUI application is an example of a network packet protocol supporting variable
length packets.

XAUI Packet Interface

Figure 3-8 shows the format of a XAUI packet.

The packet protocol for the XAUI path in the TRD is custom with a 64-bit header
containing a 16-bit Length field, a 16-bit sequence/tag number, and a 32-bit header CRC.
The minimum length for the packet is 64 bytes, and the maximum length is 16 Kbytes. The
software driver generates packets of length equal to the total payload size. It also inserts

ddr3_ck_n Output PHY signal

ddr3_ck_p Output PHY signal

ddr3_cke Output PHY signal

ddr3_cs_n Output PHY signal

ddr3_dm[7:0] Output PHY signal

ddr3_odt Output PHY signal

ddr3_parity Output PHY signal

ddr3_ras_n Output PHY signal

ddr3_reset_n Output PHY signal

ddr3_we_n Output PHY signal

ddr3_dg[63:0] Inout PHY signal

ddr3_dqs_n[7:0] Inout PHY signal

ddr3_dqs_p[7:0] Inout PHY signal

Table 3-4: Common Ports on the Virtual FIFO (Cont’d)

Port Name Type Description

X-Ref Target - Figure 3-8

Figure 3-8: XAUI Packet Format

Length
(bytes)

Tag
Number

Header (8 bytes)

Header
CRC

Data
CRC

CRC
(4 bytes)

Data

UG379_c3_08_091510

Data Payload (52 to 16,384 bytes)

Total Payload

http://www.xilinx.com

56 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Chapter 3: Functional Description

the Length (Total Payload length in bytes plus four bytes of Data CRC) and Sequence
number information and pads the Header CRC bytes in the first eight bytes of the payload.
The hardware appends a 32-bit CRC field in the header, and a 32-bit CRC value at the end
of the data. The need for a custom packet format is explained in Control S2C Variable
Length and Control C2S Variable Length.

Control S2C Variable Length

Control S2C is the glue logic between the Packet DMA and the DDR3 Virtual FIFO
Channel 0 write port. The data flow direction is Packet DMA to XAUI transmit.

When the DMA has fetched data from the host, it indicates that it is ready to transmit. The
data presented at the DMA S2C interface is stored in the Virtual FIFO only if there is free
space available.

The Virtual FIFO interfaces to an external 64-bit DDR3 memory device. Because the data
itself is 64 bits, there are no extra bits in the FIFO for storing control information. Therefore,
a way to find the start and end of the packet and bytes valid when data is read out of the
Virtual FIFO is required. The length and the Header CRC fields are used to determine the
packet boundaries.

Because it is a lot of overhead for the software driver to generate the Header CRC and Data
CRC, it is done in this block. The Control S2C logic calculates a 32-bit header CRC and
appends the result to the tag and length fields of the header. To ensure data integrity, a
32-bit data CRC is appended to the last byte of each packet. Assertion of s2c_sop indicates
when to start data CRC generation, and assertion of s2c_eop indicates when CRC should
be inserted. Depending on the number of valid bytes in the last data beat of the packet, the
data CRC insertion might require one clock cycle or two clock cycles.

• If s2c_valid < 4 bytes or s2c_valid = 4 bytes, the CRC is not split.

• If s2c_valid > 4 bytes, the CRC is split over two clocks.

To accommodate insertion of data CRC, the DMA is throttled for one or two clock cycles.
This should not affect performance, because the DMA does not push data into its
streaming FIFO every clock cycle (refer to the figure entitled “System to Card DMA
Interface Example Transaction” in the Northwest Logic DMA Back End Core User Guide
[Ref 9]).

The ports for the Variable Length version of Control S2C are listed in Table 3-5.

Table 3-5: Control S2C Variable Length Ports

Port Name Type Description

reset Input Synchronous reset

clk Input 250 MHz clock

Packet DMA Interface

s2c_src_rdy Input DMA is ready to send data

s2c_sop Input Start of packet

s2c_eop Input End of packet

s2c_valid[2:0] Input Number of valid bytes on the last 64-bit QWORD

s2c_data[63:0] Input Data received from the DMA

s2c_dst_rdy Output Control logic ready to receive data

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 57
UG379 (v1.0) October 5, 2010

Hardware Design

The Control S2C logic also detects errors and reports them to the software. At the start of
the packet, the packet length field is loaded into a register, and its value is decremented by
eight bytes, for every clock where data is transferred to the Virtual FIFO. If the EOP comes
from the DMA before the byte counter reaches eight or fewer bytes left, a sticky error bit is
set indicating an error with the packet length. Similarly, if the byte counter reaches eight or
fewer bytes left and EOP has not been signaled from the DMA, the sticky bit is also set.
This is a fatal error because without the correct length information, it is not possible to
identify packet boundaries. This sticky bit is reset when the software reads the
corresponding error register described in XAUI Error (0x9000) in Appendix B. No other
action is taken if an error is detected, because the system relies on the software to reset the
XAUI DMA channel in this case.

When the software resets the DMA, the DMA requests an abort of all pending transactions.
When the control logic acknowledges the abort, the DMA does an internal clean up after
which it asserts s2c_user_rst_n, which in turn is used to reset all logic connected to the S2C
DMA engine. For more information on DMA Abort and Reset, refer to the Northwest
Logic DMA Back End Core User Guide [Ref 9].

XGMII Transmit Align

In the S2C direction, data is pulled out of Channel 0 of the Virtual FIFO and sent out the
transmit alignment module to prepare the data for the XAUI LogiCORE™ IP block[Ref 10].
The data from the Virtual FIFO must be presented to the XAUI LogiCORE IP block in the
10 Gigabit Media Independent Interface (XGMII) format, which requires the data to be
broken out by lanes, and certain control characters added to denote the start and end of the
XAUI frame, Idles, and Errors. A start character can be located in Lane 0 or Lane 4. In the
transmit direction, this design always places the start character (/S/) in Lane 0. The rest of
the data follows byte by byte, striped across the eight lanes. A terminate character (/T/)
can be located in any lane, depending on the length of the XAUI frame. In the design, the
end of the frame is equivalent to the end of a packet. Error characters can be inserted into
the data, if required.

After the terminate character, the remaining invalid bytes must be designated as Idles
(/I/). There are at least three full clock cycles of Idles before the start of the next packet.
The number of idle cycles between packets is a software-controlled value to allow
throttling back of the XAUI packets in the case of congestion in the rest of the system. XAUI

s2c_abort Input DMA requesting abort

s2c_abort_ack Output Control logic acknowledging abort

s2c_user_rst_n Input DMA resetting backend logic after abort

Virtual FIFO Interface

wr_rdy[10:0] Input Free space available in the FIFO in bytes

wr_data[63:0] Output Data to be stored in the FIFO

wr_en Output Enable to indicate which cycle to store wr_data

Register Interface

s2c_var_clr_err Input Reset to the sticky error bit

s2c_var_pkt_len_err Output Indicates an error with the packet length field of the header

Table 3-5: Control S2C Variable Length Ports (Cont’d)

Port Name Type Description

http://www.xilinx.com

58 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Chapter 3: Functional Description

packets cannot be paused when the packet has started, therefore the software could
monitor the system and proactively change the inter-frame gap (IFG) to avoid dropped
packets. Idles are sent when there is no data to send.

The XGMII transmit module generates a read enable to the Virtual FIFO when three
requirements are met:

1. The first requirement is that a full packet is stored in the FIFO to avoid the possibility
of running out of data in the middle of a XAUI transmission. To know whether a full
packet is stored in the FIFO, there is a packet counter in the XGMII transmit module,
and the increment signal to this counter is provided by the Control S2C Variable
Length logic whenever it sees an EOF on the S2C interface of the DMA. Because there
are two separate clock domains (250 MHz for DMA and 156.25 MHz for XAUI), the
Control S2C logic holds the increment signal for two cycles in the 250 MHz domain.
An external module synchronizes this signal to the 156.25 MHz clock domain of XAUI.
Then the synchronized signal generates a pulse in the 156.25 MHz domain based on
the rising edge of the synchronized signal, which increments the counter by one. The
counter decrements by one when the XAUI frame terminates. The size of the counter is
determined by dividing the total size of the XAUI transmit FIFO (1/4 of the total size
of DDR3 memory) by the minimum packet length (64 bytes).

2. In addition to knowing that a full packet is stored in the Virtual FIFO, there is also a
threshold that must be met for the Virtual FIFO output buffer. This threshold is a
parameter that can be set at synthesis time. The XGMII transmit module only starts to
read from the FIFO when the bytes available in the FIFO (rd_rdy signal) are over the
threshold value. This threshold value ensures that the output buffer of the Virtual FIFO
does not go empty during the XAUI packet transmission. If the XGMII alignment logic
reads less than eight bytes on a clock from the Virtual FIFO or reads from an empty
output buffer, then the current packet on the XAUI path is corrupted, and the
xaui_tx_err sticky bit is set. This is a fatal error, and the XGMII transmit module cannot
recover from this condition.

3. The last condition to generate the read enable to the Virtual FIFO is that at least half of
the packet must be in the Virtual FIFO’s output buffer. To know how large the packet
is, this module looks at the first piece of data showing on the output port of the Virtual
FIFO. If the transmit path is operating correctly, this data is the header of the packet
waiting in the Virtual FIFO to be read.

When all three conditions are satisfied, this module asserts the FIFO read signal and starts
transmission of the packet to the XAUI LogiCORE IP block.

Two counters in this module keep track of how many bytes to pull out of the Virtual FIFO.
One counter keeps track of how many bytes are left in the Virtual FIFO for this packet by
loading the counter with the packet length found in the header of the packet and
decrementing by eight every clock. The other counter keeps track of how many bytes are
left to transmit for XAUI, because XGMII adds a byte at the beginning and at the end. This
second counter also uses the packet header as the initial value of the counter,
compensating for the extra bytes for XGMII, and decrements by eight every clock. If the
byte counters decrement too far, the sticky error bit is set, which is reset by a software read
of the XAUI Error register (see XAUI Error (0x9000) in Appendix B).

Software can slow down transmission of XAUI packets by adjusting the IFG, which is the
number of idle clock cycles between packets. By default, this module assigns the IFG to the
minimum number for XAUI, which is three idle clocks. However, the software can
program the IFG register to add more clocks to the IFG (see XAUI IFG (0x9004) in
Appendix B). If, for example, the software programmed the register to be a value of 10, the
IFG would be set to 13 clocks.

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 59
UG379 (v1.0) October 5, 2010

Hardware Design

Table 3-6 shows the ports of the XGMII Transmit module.

XAUI LogiCORE IP Block

The XAUI LogiCORE IP block [Ref 10] provides a 4-lane high-speed serial interface,
providing up to 10 Gb/s total throughput. Operating at an internal clock speed of
156.25 MHz, the core provides an XGMII interface, which connects to XGMII Transmit
Align and XGMII Receive Align blocks of the TRD. In this reference design, the
Virtex-6 FPGA GTX transceiver serial lines of the XAUI LogiCORE IP block are looped
back so that the data transmitted is sent back to the host, thus exercising the Receive path.

XGMII Receive Align

In the C2S direction, XAUI packets are received in XGMII format. They need to be 64-bit
aligned and presented to the Virtual FIFO for storage. According to the XAUI specification,
the start character (/S/) can be received on Lane 0 or Lane 4. This module can handle both
cases.

When a new XAUI packet is received, this module checks the space available in the input
buffer of the Virtual FIFO. If the space is less than a predetermined threshold value, the
entire XAUI packet is dropped. With XAUI, when a packet starts, it cannot be paused in the
middle of the packet. If the FIFO becomes full while the XAUI data is being written into it,
the design has no choice but to drop the incoming XAUI data. Not only does the incoming
data get dropped, but when the FIFO is ready to accept data again, it receives a new packet
that appends to the middle of the previous packet. So the Control C2S module reading
from the Virtual FIFO counts the bytes coming out of the FIFO, according to the header
length value. When it reaches the end of the count, it could be in the middle of a
subsequent packet and will not be able to find the start of the next packet. To be able to find

Table 3-6: XGMII Transmit Ports

Port Name Type Description

reset Input Synchronous reset

clk Input 156.25 MHz clock

XGMII Interface

xgmii_txd[63:0] Output Data to the XAUI LogiCORE IP block

xgmii_txc[7:0] Output Control bits for the XAUI LogiCORE IP block

Virtual FIFO Interface

tx_data[63:0] Input Input data from the FIFO

rd_rdy[10:0] Input Bytes available in the FIFO

fifo_rd Output Read enable signal to the FIFO

Register Interface

xaui_clr_err Input Clears the error sticky bit

xaui_tx_err Output Sticky bit indicating an error during transmit operations

Miscellaneous

xaui_ifg[15:0] Input Number of clocks to add to minimum IFG

pkt_incr Input Signal from the DMA to increment packet counter

http://www.xilinx.com

60 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Chapter 3: Functional Description

the start of the next packet and recover, the packet needs some alignment information.
Figure 3-9 shows the recover sequence when alignment is lost.

The design uses the XAUI IFG as the alignment mechanism. Every XAUI packet must have
at least three IDLE columns before the start of a new packet. In XAUI, there is a sideband
control signal that tells which of the eight bytes are control versus data; however, these
cannot be used because they cannot be stored in the DDR3 memory. Instead, the sequence
of two IDLE columns plus the XAUI start character (/S/ or 'hFB) is used to determine a
possible start to the packet. The XGMII RX logic aligns the incoming data to put the start
character in the [63:56] byte location, no matter where the start character was found. Thus
each packet stored in Virtual FIFO has an IDLE and START pattern appended to it.

The C2S Control logic reading data from the Virtual FIFO implements the pattern
matching scheme shown in Figure 3-9 to find the start of a packet. When the IDLE and
START patterns are found, the C2S Control logic checks the next QWORD, which should
be the header of the next packet. To validate whether this is the header versus data in the
middle of a packet, the control logic calculates the CRC over the first four bytes of the
header and checks it against the four-byte CRC field in the header. If the CRC matches,
then the control logic assumes that this is the start of the packet and uses the byte counter
to find the end of the packet. If the CRC does not match, the state machine looks again for
the IDLE and START patterns and repeats the sequence until the CRC matches. The control
logic does not send the packet data to the DMA after detecting an invalid header CRC, but
the first misaligned packet does get through before the issue is detected. Therefore it is up
to the upper layer to recover from missing or corrupted packets.

X-Ref Target - Figure 3-9

Figure 3-9: Pattern Matching Sequence to Recover When Alignment is Lost

{IDLE, IDLE, IDLE, IDLE, IDLE, IDLE,
IDLE, IDLE}

Yes
No

No

No

UG379_c3_09_091510

matches pattern?

rd_data[63:0]

matches pattern?

CRC checks out?

Aligned

Yes

Yes

{START, IDLE, IDLE, IDLE, IDLE, IDLE,
IDLE, IDLE}

{Header CRC, Header Tag, Header Length}

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 61
UG379 (v1.0) October 5, 2010

Hardware Design

Table 3-7 shows the ports of the XGMII Receive module.

Control C2S Variable Length

Control C2S is the glue logic between the Packet DMA and the Channel1 Virtual FIFO read
port. The direction of data flow is XAUI Receive to Packet DMA.

If the DMA has fetched the buffer descriptors to transfer data from card to system, it
indicates that it is ready to accept data. If the Virtual FIFO indicates that a read threshold
value has been reached on rd_rdy, then the data is read from the FIFO and sent to the
DMA.

The packets received from XAUI are stored in Virtual FIFO in the format shown in
Table 3-8.

This packet format not only helps to determine packet boundaries, but also helps to
recover from data misalignment as described in XGMII Receive Align, page 59.

The packet start is identified based on IDLE and START patterns. These are not passed to
the DMA. The 64 bits following START are the first QWORD of data. CRC is calculated
over tag and packet length. If the calculated CRC equals the Header CRC, then the packet
is valid and can be sent to the DMA; otherwise it is dropped. If the packet is dropped, a

Table 3-7: XGMII Receiver Ports

Port Name Type Description

reset Input Synchronous reset

clk Input 156.25 MHz clock

XGMII Interface

xgmii_rxd[63:0] Input Data from the XAUI LogiCORE IP block

xgmii_rxc[7:0] Input Control bits from the XAUI LogiCORE IP block

Virtual FIFO Interface

wr_rdy[10:0] Input Bytes free inside the FIFO buffer

rx_data[63:0] Output Write data to the FIFO

fifo_wr Output Write enable signal to the FIFO

Table 3-8: XAUI Packet Format When Stored in the Virtual FIFO

[63:56] [48:55] [47:40] [39:32] [31:24] [23:16] [15:8] [7:0]

IDLE IDLE IDLE IDLE IDLE IDLE IDLE IDLE

START IDLE IDLE IDLE IDLE IDLE IDLE IDLE

HEADER CRC TAG PACKET LEN

DATA DATA DATA DATA DATA DATA DATA DATA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

DATA DATA DATA DATA DATA DATA DATA

DATA DATA DATA DATA PACKET CRC

http://www.xilinx.com

62 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Chapter 3: Functional Description

sticky bit called c2s_var_dropped_pkt is set. This bit is cleared when the software reads the
error register described in XAUI Error (0x9000) in Appendix B. This is a non-fatal error,
and the logic can recover from this situation.

When the first QWORD of data is presented on the DMA interface, c2s_sop (start of
packet) is also asserted. The packet length from the first QWORD is used to determine
when the end of packet (c2s_eop) occurs and how many bytes are valid in the last QWORD
(c2s_valid).

To allow for a data integrity check by the software, a 32-bit CRC is generated for each
packet. The CRC is calculated over every valid QWORD, excluding the four bytes of
packet CRC appended at the end of the packet. This 32-bit CRC value is passed to the DMA
on the c2s_user_status signal. The DMA updates the User Status field of the Buffer
Descriptor corresponding to the packet with the c2s_user_status signal. Software
compares the last four bytes of the packet with the User Status field. If the values are not
equal the packet is corrupted.

For every packet, no data is sent to the DMA for three clock cycles, which correspond to the
IDLE pattern, the START pattern, and calculation of the Header CRC. Performance is not
affected because the DMA spends some cycles updating buffer descriptors.

The control logic stops reading from the output buffer when the rd_rdy signal from the
Virtual FIFO falls below a predetermined threshold value. In the case where no new data is
pushed into the output buffer of the Virtual FIFO and reads are halted because the
threshold is reached, there is a mechanism to read the remaining bytes, ensuring that no
data is left in the FIFO for long.

Table 3-9 lists the ports on the Control C2S module.

Table 3-9: Control C2S Variable Ports

Port Name Type Description

reset Input Synchronous reset

clk Input 250 MHz clock

Packet DMA Interface

c2s_dst_rdy Input DMA is ready to receive data

c2s_src_rdy Output Control logic is ready to send data

c2s_sop Output Start of packet

c2s_eop Output End of packet

c2s_valid[2:0] Output Number of valid bytes on the last 64-bit QWORD

c2s_data[63:0] Output Data to send to the DMA

c2s_user_status[63:0] Output Calculated CRC is transmitted on this signal

c2s_abort Input DMA requesting an abort

c2s_abort_ack Output Control logic acknowledging an abort

c2c_user_rst_n Input DMA resetting backend logic after an abort

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 63
UG379 (v1.0) October 5, 2010

Hardware Design

The software might reset the DMA when it detects fatal errors or is trying to unload the
driver. When software resets the DMA, the DMA requests an abort of all pending
transactions. The control logic makes sure that if the packet was in mid-transmission, it is
terminated by asserting c2s_eop before acknowledging the abort. The c2s_abort_ack signal
allows the DMA to do an internal clean-up after which it asserts c2s_user_rst_n. In turn,
the c2s_user_rst_n signal is used to reset all logic connected to the C2S DMA engine. For
more information on DMA Abort and Reset, refer to the Northwest Logic Back End Core
User Guide [Ref 9].

Figure 3-10 and Figure 3-11 show the data flow for XAUI transmit operations (from host
system to XAUI) and XAUI receive operations (from XAUI to host system), respectively.
These figures assume that the Read Completion boundary (RCB) is 64 bytes and the Max
Payload size is 128 bytes on PCIe.

Virtual FIFO Interface

rd_rdy[10:0] Input Number of bytes available for reading

rd_data[63:0] Input 64-bit data output in response to rd_en

rd_en Output Enable to read data from the FIFO

Register Interface

c2s_var_dropped_pkt Output Indicates that a packet was dropped

c2s_var_clr_err Input Reset to the sticky error bit

Table 3-9: Control C2S Variable Ports (Cont’d)

Port Name Type Description

X-Ref Target - Figure 3-10

Figure 3-10: XAUI Transmit

HOST

8 Bytes

PCIe Wrapper
DMA

DMA S2C
Packet Control

S2C Packet
 Control

Virtual FIFO
XGMII TX

XGMII TX

8 Bytes 8 Bytes

12 Bytes 12 Bytes 64 Bytes

12 Bytes 64 Bytes 12 Bytes 64 Bytes
or Less

64 Bytes or Less

8 Bytes

DATA nDATA 2 • • • • • • •DATA 1DATA 0X’0000, tag,
pkt_len

DATA 0 • • • •
DATA a

DATA a • • • •
DATA a+64

DATA e • • • •
DATA e+64

X’0000, tag,
pkt_len

PCIe Header

PCIe Header DATA m • • • •
DATA n

PCIe Header

PCIe Header

8 Bytes
or Less

n Bytes

8 Bytes 8 Bytes 8 Bytes 8 Bytes

DATA nDATA 2 • • • • • • •

• • • • • • •

• • • • • • •

DATA 1DATA 0X’0000, tag,
pkt_len

8 Bytes

1
Byte

1
Byte

8 Bytes 8 Bytes 8 Bytes 8 Bytes

DATA 1 DATA n + CRC

DATA n + CRC

CRC + PAD

CRC END

UG379_c3_10_091510

DATA 0Hdr_crc_tag,
pkt_len

8 Bytes 8 Bytes 8 Bytes 8 Bytesn Bytes

DATA 1DATA 0Hdr_crc_tag,
pkt_len

START

8 Bytes
or Less

8 Bytes
or Less

n Bytes

http://www.xilinx.com

64 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Chapter 3: Functional Description

Raw Data Path

The Raw Data application is an example of a data streaming protocol. Because the DMA
provides a packetized interface on its backend, a fixed length packet is defined on this
path, though the data itself does not have any packet annotations in the user space. The
fixed length is configurable through a register write (refer to Packet Length (0x9104) in
Appendix B for details).

Control S2C Static Length

Control S2C is the glue logic between the Packet DMA and the DDR3 Virtual FIFO write
port of Channel 2. The direction of data flow is Packet DMA to Raw Data Transmit.

When the DMA has fetched data from the host, it indicates that it is ready to transmit by
asserting s2c_sop and s2c_src_rdy. The data presented at the DMA S2C interface is stored
in the Virtual FIFO only if the free space available in the FIFO is greater than a
programmed threshold value (implying the FIFO is not full).

In the Raw Data path, the S2C data transfer is essentially a memory (host) to memory
(Virtual FIFO) transfer. There is no requirement for delineation of packets, thus control
signals s2c_sop (start of packet) and s2c_eop (end of packet) are ignored. The s2c_valid
signal (number of bytes valid in the last data beat of a packet) is also ignored, because data
is always 64-bit aligned by design.

X-Ref Target - Figure 3-11

Figure 3-11: XAUI Receive

XGMII RX

DMA
PCIe Wrapper

12 Bytes 12 Bytes 128 Bytes

12 Bytes 128 Bytes 12 Bytes 128 Bytes
or Less

128 Bytes or Less

DATA 0 • • • •
DATA a

DATA a • • • •
DATA a + 64

DATA e • • • •
DATA e + 64

Hdr_crc, tag,
pkt_len

PCIe Header

PCIe Header DATA m • • • •
DATA n + CRC

PCIe Header

PCIe Header

HOST

8 Bytes 8 Bytes 8 Bytes n Bytes

DATA n + CRC CRC• • • • • • •DATA 1DATA 0Hdr_crc, tag,
pkt_len

8 Bytes
or Less

8 Bytes

• • • • • • •

1
Byte

1
Byte

DATA n + CRC CRC END

UG379_c3_11_091510

C2S Packet
 Control

DMA
• • • • • • •

• • • • • • •

8 Bytes 8 Bytes 8 Bytes 8 Bytes 8 Bytes
or Less

DATA 1 DATA n + CRC CRCDATA 0Hdr_crc_tag,
pkt_len

XGMII RX
Virtual FIFO
C2S Packet

Control 8 Bytes 8 Bytes 8 Bytes 8 Bytes

CRD + PADDATA 0 DATA 1 DATA n + CRC• • • • • • •START
PATTERN

IDLE
PATTERN

8 Bytes 8 Bytes8 Bytesn Bytes

Hdr_crc_tag,
pkt_len

8 Bytes 8 Bytes 8 Bytes 8 Bytesn Bytes

n Bytes

DATA 1DATA 0Hdr_crc_tag,
pkt_len

START

8 Bytes
or Less

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 65
UG379 (v1.0) October 5, 2010

Hardware Design

Table 3-10 lists the ports on the Control S2C module.

The abort and reset signals from the DMA are handled in the same way as described in the
Control S2C Variable length.

Loopback Static Length

The Loopback Static length module implements a loopback function, a data checker
function, and a data generator function. The module enables specific functions depending
on the GUI configuration options selected by the user. On the transmit path, the data
checker verifies the data transmitted from the host system via the Packet DMA. On the
receive path, data can be sourced either by the data generator or transmit data can be
looped back and sent to the host system.

Based on user inputs, the driver programs user space registers to enable checker, enable
generator, or enable loopback (see Enable Generator (0x9100) and Enable Checker or
Loopback (0x9108) in Appendix B).

If the Enable Loopback bit is set, as soon as bytes are available in both directions of the
Virtual FIFO above a threshold value, the FIFO read enable and FIFO write enable signals
are asserted simultaneously. This cycles the data from one channel (Channel 2 in
Figure 3-6, page 53) of the Virtual FIFO back into another channel (Channel 3 in Figure 3-6)
with no change to the data. In the loopback mode, data is not verified by the checker; the
software driver on the receive end checks for data integrity.

Table 3-10: Control S2C Static Ports

Port Name Type Description

reset Input Synchronous reset

clk Input 250 MHz clock

Packet DMA Interface

s2c_src_rdy Input DMA is ready to send data

s2c_sop Input Start of packet

s2c_eop Input End of packet

s2c_valid[2:0] Input Number of valid bytes on the last eight-byte QWORD

s2c_data[63:0] Input Data received from the DMA

s2c_dst_rdy Output The control logic is ready to receive data

s2c_abort
Input

The DMA asserts this input to request an abort to the
transfer

s2c_abort_ack Output The control logic acknowledges and is ready for an abort.

s2c_user_rst_n Input DMA reset to the control logic. The DMA resets the backend
logic after an abort.

Virtual FIFO Interface

wr_rdy[14:0] Input Free space available in the FIFO in bytes

wr_data[63:0] Output Data to be stored in the FIFO

wr_en Output Enable to indicate which cycle to store wr_data

http://www.xilinx.com

66 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Chapter 3: Functional Description

If the Enable Checker bit is set, as soon as bytes are available in the transmit direction of the
Virtual FIFO above a threshold value, the FIFO read enable is asserted. The data read from
the Virtual FIFO (Channel 2 in Figure 3-6) is checked against a fixed data pattern. If there is
a mismatch during a comparison, the data_mismatch signal is asserted. This signal can be
accessed through the register space (see Data Mismatch (0x910C) in Appendix B).

If the Enable Generator bit is set and the Virtual FIFO has free space available above a
threshold value, the FIFO write enable is asserted. The data produced by the generator is
written into the Virtual FIFO (Channel 3 in Figure 3-6). The data from the generator also
follows the same data pattern as the checker.

The data received and transmitted by the module is divided into packets. The first two
bytes of each packet define the length of packet. All other bytes carry the tag/sequence
number of the packet. The tag number increases by one per packet. Table 3-11 shows the
packet format used in the loopback static module.

Note: The data has been packetized and uses a fixed pattern to enable data checking. The data can
be any random data without packet boundaries otherwise.

Table 3-12 shows the ports on the loopback static module.

Table 3-11: Packet Format in the Loopback Static Module

[63:56] [48:55] [47:40] [39:32] [31:24] [23:16] [15:8] [7:0]

TAG TAG TAG PACKET LEN

TAG TAG TAG TAG

-

-

-

-

-

-

-

-

TAG TAG TAG TAG

Table 3-12: Loopback Static Ports

Port Name Type Description

reset Input Synchronous reset

clk Input 250 MHz clock

Virtual FIFO Interface

fifo_rd Output Read enable for the Virtual FIFO

tx_data Input Read data from the Virtual FIFO

rd_rdy Input Number of bytes available for reading

fifo_wr Output Write enable for the Virtual FIFO

rx_data Output Write data to the Virtual FIFO

wr_rdy Input Free space available in the Virtual FIFO in bytes

Register Interface

enable_loopback Input Loopback function enable

enable_generator Input Data generator function enable

pkt_len Input Length of packets produced by the generator

enable_checker Input Data checker function enable

data_mismatch Output Incorrect transmit data indicator

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 67
UG379 (v1.0) October 5, 2010

Hardware Design

Control C2S Static Length

Control C2S is the glue logic between the Packet DMA and the DDR3 Virtual FIFO read
port of Channel 3. The direction of data flow is Raw Data Receive to Packet DMA.

If the DMA has fetched a buffer descriptor from the host, it indicates that it is ready to
receive data by asserting c2s_dst_rdy. If the Virtual FIFO has enough bytes to transmit
based on a threshold parameter, it starts the transfer. In the case where no new data is
pushed into the output buffer of the Virtual FIFO and reads are halted because the
threshold is reached, there is a mechanism to read the remaining bytes, ensuring that no
data is left in the FIFO for very long.

For the Raw Data path, because there is no packet delineation, the c2s_sop signal (start of
packet) is asserted on the first QWORD is presented to the DMA from the Virtual FIFO.
When the required number of bytes transferred is equal to the configured fixed length
(refer to Appendix B, Register Descriptions), c2s_eop is asserted. When there is enough
data in the FIFO to start a new transfer, c2s_sop is asserted again, and the process repeats.

Table 3-13 lists the ports on the Control C2S module.

The abort and reset signals from the DMA are handled in the same way as described in the
Control C2S Variable length.

Table 3-13: Control C2S Static Length Ports

Port Name Type Description

reset Input Synchronous reset

clk Input 250 MHz clock

Packet DMA Interface

c2s_dst_rdy Input Indicates DMA is ready to receive data

c2s_src_rdy Output Control logic is ready to send data

c2s_sop Output Start of packet

c2s_eop Output End of packet

c2s_valid[2:0]
Output

Number of valid bytes on the last eight-byte
QWORD

c2s_data[63:0] Output Data to send to the DMA

c2s_user_status[63:0] Output Calculated CRC is transmitted on this signal

c2s_abort Input DMA requesting abort

c2s_abort_ack Output Control logic acknowledging an abort

c2c_user_rst_n Input DMA resetting backend logic after abort

Virtual FIFO Interface

rd_rdy[14:0] Input Number of bytes available for reading

rd_data[63:0] Input Read data from the FIFO

rd_en Output Enable to read data from the FIFO

http://www.xilinx.com

68 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Chapter 3: Functional Description

Clocking
This section describes the clocking requirements for the Virtex-6 FPGA Connectivity TRD.
Four differential clocks are needed in this TRD:

• 200 MHz and 400 MHz for the Memory Controller

• 156.25 MHz for XAUI

• 100 MHz for PCIe

The ML605 board used for this reference design has a 100 MHz differential clock coming
from the PCIe edge connector, which is multiplied to 250 MHz by an ICS device on the
board. This differential 250 MHz is passed on to the wrapper for PCI Express. The
156.25 MHz differential clock for XAUI comes from the FMC daughter card. The 200 MHz
differential clock for the DDR3 memory controller comes from an oscillator on the ML605
board, and the 400 MHz clock is generated inside the memory controller by adjusting the
MMCM multipliers and dividers.

Figure 3-12 shows the clocking connections. The wrapper for PCI Express generates a
250 MHz single-ended clock that goes to the DMA, DMA Control, Virtual FIFO, and Raw
Data modules. The XAUI LogiCORE IP block generates a single-ended 156.25 MHz clock
that goes to the XGMII TX/RX modules and the Virtual FIFO. The DDR3 memory
controller generates a single-ended 200 MHz clock for the Virtual FIFO backend, and a
400 MHz single/differential clock for various parts of the memory controller and the
external DDR3 device.
X-Ref Target - Figure 3-12

Figure 3-12: Clocking Diagram

IBUFDS

MMCM

DDR3 Memory Controller

XAUI

Virtual FIFO

DMA

IBUFDS

GTX Transceiver

DDR3

clk_250

clk_250

clk_156.25

clk_200

XGMII RX

clk

clk

clk

XGMII TX

clk

DMA Control C2S

clk

clk

UG379_c3_12_091510

clk_200_p

clk_200_n

clk_156.25_p

clk_156.25_n

clk_250_p

clk_250_n

DMA Control S2C

Raw Data
Loopback

156.25 MHz
Domain

250 MHz
Domain

200 MHz
Domain

Wrapper for PCI Express

IBUFDS

MMCM

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 69
UG379 (v1.0) October 5, 2010

Hardware Design

Resets
Table 3-14 lists the resets by function for the Virtex-6 FPGA Connectivity TRD.

Table 3-14 shows how the different blocks get reset depending on the events that happen.
The primary reset for the Virtex-6 FPGA Connectivity TRD is driven from the PERSTn pin
of the PCIe edge connector. When this asynchronous pin is active (Low), the Virtex-6 FPGA
Integrated Block for PCI Express, GTX transceivers for PCIe and XAUI, and DDR3
Memory Controller IP are held in reset. When PERSTn is released, the initialization
sequences start on these blocks. The initialization sequence for each of these blocks takes a
long time, which is why they get the PERSTn pin directly. Each of these blocks has an
output that reflects the status of its initialization sequence. PCIe asserts user_lnk_up, XAUI
asserts align_status, and the memory controller asserts phy_init_done when the respective
initialization is complete. These status signals are combined to generate the user logic
resets. Figure 3-13 shows the connections for the resets used in the design.

Table 3-14: Resets by Function

Modules
PERSTn
Asserted

PCIe Link
Goes Down

Software
Requests DMA

Abort

XAUI Goes
Down

Wrapper for PCI Express X

DMA IP X X X

Control Logic X X X

DDR3 Memory Controller IP X

Virtual FIFO X X X X

XAUI IP X

XGMII TX/RX X X X X

Raw Data Loop X X X

http://www.xilinx.com

70 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Chapter 3: Functional Description

In addition, a software reset is implemented through the Packet DMA ports s2c_user_rst_n
and c2s_user_rst_n, for each DMA channel. It is used when the software wants to reset the
entire design without bringing the PCIe link down. This is done when unloading the
driver or when software detects fatal errors when running the TRD (refer to XAUI Error
(0x9000) in Appendix B). In this case, the reset block waits for both C2S and S2C user
resets to be asserted before resetting the Virtual FIFO, XGMII TX/RX module, and the Raw
Data Loop module. The control modules are reset as soon as the user_rst_n signal
connected to it is asserted by the Packet DMA.

X-Ref Target - Figure 3-13

Figure 3-13: Reset Diagram

Virtual FIFOReset_ctrl

XAUI

Wrapper for PCI Express

DMA

Software
Reset

200 MHz
Domain

Raw Data
Loopback

vf_rstPERST n

PERST n

PERST n

dma_rst0
dma_rst1

raw_data_rst

ddr3_rstphy_init_done

ddr_reset_n

align_status

user_lnk_up

s2c0_user_rst_n, c2s0_user_rst_n

s2c1_user_rst_n, c2s1_user_rst_n

mgt_tx_ready

xaui_rst

rst

DMA Control
S2C

DMA Control
C2S

rst

user_rst_n

rst

user_rst_n

UG379_c3_13_091510

rst

XGMII TX

rst

rst

XGMII RX

DDR3 Memory
Controller

GTX Transceiver

DDR3

156.25 MHz
Domain

250 MHz
Domain

rst_backend

rst_mc

rst_mc

dma0_rst
dma1_rst

raw_data_rst

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 71
UG379 (v1.0) October 5, 2010

Software Design

Software Design
Figure 3-14 shows the software components of the Virtex-6 FPGA Connectivity TRD. The
software comprises several Linux kernel-space drivers and a user-space application.

Kernel-space drivers are responsible for:

• Configuration of the DMA engine to enable data transfers between the hardware
design and main system memory.

• Generation and transfer of XAUI packets from host memory to the XAUI interface
(transmit). Transfer of XAUI data looped back at the serial interface to the host
memory (receive).

• Generation and transfer of raw data streams from host memory to hardware loopback
module (transmit). Transfer of the looped streaming data back to the host memory
(receive).

X-Ref Target - Figure 3-14

Figure 3-14: Software Architecture Overview

DMA Engine Interface and Interrupt
Management Interfaces

UG379_c3_14_091510

Software

Hardware

User Space

Kernel Space

Northwest Logic DMA Engine

Interrupt Operations

DMA Operations
Init

ISR
Base DMA
Driver

User Drivers

Control GUI
xpmon

Driver Entry: open,
close, ioctl, read

Block Data Handler
(Raw Data)

Block Data
Handler (XAUI)

Performance
Monitor

Statistics of PCIe Link,
DMA Engine

Legend

User
Interface

Hardware Blocks Blocks Designed

Driver Entry
Point

User
Hooks

Handler Routine, e.g., Bottom
Half or Timer Routine

ISR

http://www.xilinx.com

72 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Chapter 3: Functional Description

The user-space application (xpmon) is a graphical user interface (GUI) used to:

• Manage the driver and device; for example, setting configuration controls for packet
generation.

• Display of performance statistics reported by the performance monitor on the
AXI4-Stream interface and DMA performance monitor.

The software developed:

• Can generate adequate data to enable the hardware design to operate at throughput
rates of up to 10 Gb/s end to end.

• Showcases the ability of the multichannel DMA to transfer large amounts of data.

• Provides a user interface that is easy to use and intuitive.

• Is modular and allows for reuse in similar designs.

Kernel Components

Driver Entry Points

The driver has several entry points, some of which are described here. The probe()
function is invoked by the system when a hardware match is detected after driver insertion
(when the PCIe device probed by the driver is found). After reading the device’s
configuration space, various initialization actions are done. These are initialization of the
DMA engine(s), setting up of receive and transmit buffer descriptor rings, and, finally,
initialization of interrupts.

The other driver entry points are when the GUI starts up and shuts down; when a new
performance test is started or stopped; and to convey periodic status information and
performance statistics results to the GUI.

DMA Operations
For each DMA channel, the driver sets up a buffer descriptor ring. At initialization, the
receive ring (associated with a C2S channel) is fully populated with buffers meant to store
incoming packets, and the entire receive ring is submitted for DMA. On the other hand, the
transmit ring (associated with a S2C channel) is empty. As packets arrive at the base DMA
driver for transmission, they are added to the buffer descriptor ring and submitted for
DMA.

Block Data Handler
Data payload for XAUI and raw data flows is being generated and consumed in two
instances of the block data handler. These are referred to as the XAUI and Raw Data
drivers, respectively. When a test is started, data buffers are generated of random and fixed
sizes based on user selection and then queued for transmit DMA. The hardware design
loops this data back through the XAUI LogiCORE IP block or the Loopback module, and
the data buffers arrive in the system as receive DMA. The handler does a data integrity
check on the received data after which it discards the data and returns the buffer to a free
pool for future use.

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 73
UG379 (v1.0) October 5, 2010

Software Design

Interrupt Service Routine
If interrupts are enabled (by setting the compile-time macro TH_BH_ISR), the interrupt
service routine (ISR) handles interrupts from the DMA engine and other errors from
hardware, if any. The driver sets up the DMA engine to interrupt after every N descriptors
that it processes. This value of N can be set by a compile-time macro. The ISR invokes the
functionality in the block handler routines pertaining to handling received data and
housekeeping of completed transmit and receive buffers.

Performance Monitor
The performance monitor is a handler that reads all the performance-related registers
(PCIe link level, DMA Engine level). Each of these is read periodically at an interval of one
second.

User Hooks
The design code is developed to allow easy modification, via compile-time variables and
APIs, which can be adapted easily to a different application. These hooks have been
provided in the areas shown in Figure 3-14.

User Space Components
The Control and Monitor GUI (xpmon) is a graphical user interface tool used to monitor
device status, run performance tests, and display statistics. It conveys the user-configured
test parameters to the XAUI and raw data drivers, which then start an appropriate test.
Performance statistics gathered during the test are periodically conveyed to the GUI
through the base DMA driver, where they are displayed in several graphs. For screen
captures of the graphs, refer to Chapter 2, Getting Started.

When installed, the base DMA driver appears as a device table entry in Linux. The GUI
uses the typical file-handling functions (open, close, and ioctl) on this device, to
communicate with the driver. These calls result in the appropriate driver entry points
being invoked.

Control

The GUI allows the user to specify the following before starting a test:

• Minimum/maximum packet sizes

• Internal GTX transceiver loopback enable/disable for the XAUI path

When the user starts a test, the GUI informs the DMA driver of the parameters of the test
(which flow type; if XAUI, whether internal GTX transceiver loopback is enabled or
disabled; random or fixed buffer sizes). The driver entry point sets up the test parameters
and informs the Block Data Handlers for XAUI and raw data, which then start setting up
data buffers for transmission, reception, or both. Similarly, if the user were to abort a test,
the GUI informs the driver, which stops the packet generation mechanism. The test is
aborted by stopping the transmit side flow and then allowing the receive side flow to
drain.

http://www.xilinx.com

74 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Chapter 3: Functional Description

Monitor

The driver always maintains information on the status of the hardware. The GUI
periodically invokes an ioctl() to read this status information.

• PCIe link status, device status

• DMA Engine status

• BDs and buffer information from drivers

• Interrupt status

The driver maintains a set of arrays to hold per-second sampling points of different kinds
of statistics, which are periodically collected by the performance monitor handler. The
arrays are handled in a circular fashion. The GUI periodically invokes an ioctl() to read
these statistics, and then displays them.

• PCIe link statistics provided by hardware

• DMA engine statistics provided by DMA hardware

• Graph display of all of the above

Figure 3-15 shows a screen capture of the GUI with the System Status tab selected.
X-Ref Target - Figure 3-15

Figure 3-15: Software Application Screen Capture
UG379_c3_15_091510

4

3

17

18

19

7

6

5

16

1

2

20

9
8

11

10

12

13

14

15

21

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 75
UG379 (v1.0) October 5, 2010

Software Design

The various GUI fields as per the numbering are explained here:

1. Stop Test. Test start/stop control for XAUI applications.

2. Start Test. Test start/stop control for Raw Data applications.

3. Min Packet Size and Max Packet Size. Maximum packet size and minimum packet size
selection in bytes for the XAUI path.

4. Packet Size. Fixed packet size selection in bytes for the Raw Data path.

5. Enable Internal GT Loopback. Enables internal (near-end PMA) loopback on the GTX
transceivers for XAUI.

6. PCIe Statistics tab. Plots the PCIe transactions on the AXI4-Stream interface.

7. Payload Statistics tab. Shows the payload statistics graphs based on DMA engine
performance monitor.

8. Throughput (Gbps). DMA payload throughput in gigabits per second for each engine.

9. DMA Active Time (ns). The time in nanoseconds that the DMA engine has been active
in the last second.

10. DMA Wait Time (ns). The time in nanosecond that the DMA was waiting for the
software to provide more descriptors.

11. BD Errors. Indicates a count of descriptors that caused a DMA error. Indicated by the
error status field in the descriptor update.

12. BD Short Errors. Indicates a short error in descriptors in the transmit direction when
the entire buffer specified by length in the descriptor could not be fetched. This field is
not applicable for the receive direction.

13. # SW BDs. Indicates the count of total descriptors set up in the descriptor ring.

14. # SW Buffers: Indicates the count of total data buffers associated with the ring.

15. Interrupts Enabled. Indicates the interrupt enable status for that DMA engine. The
driver enables interrupts on a DMA engine by writing to the DMA engine’s register
space. To enable interrupts, the compile-time macro TH_BH_ISR needs to be set.

16. Int GT Loopback. Indicates the user has enabled internal GTX transceiver loopback on
the XAUI path.

17. PCIe Transmit (writes) (Gbps). Reports the transmit (Endpoint card to host) utilization
as obtained from the PCIe performance monitor in hardware.

18. PCIe Receive (reads) (Gbps): Reports the receive (host to Endpoint card) utilization as
obtained from the PCIe performance monitor in hardware.

19. PCIe Endpoint Status. Reports the status of various PCIe fields as reported in the
Endpoint’s configuration space.

20. Host System’s Initial Flow Control Credits. Initial Flow control credits advertised by
the host system after link training with the Endpoint. A value of zero implies infinite
flow control credits.

21. The text pane at the bottom shows informational messages, warnings, or errors.

http://www.xilinx.com

76 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Chapter 3: Functional Description

GUI Programming Environment

GTK+ [Ref 11] was chosen as the GUI programming environment due to these advantages:

• GTK+ libraries are native to Linux. Nothing has to be installed for basic features,
making it easy to distribute source code and binaries for the GUI.

• It supports C/C++ programming.

• The code can be reused on Microsoft Windows (where GTK+ needs to be installed).

• It is widely used and popular in the Linux community and is free.

DMA Descriptor Management
This section describes the DMA operation in terms of the descriptor management. It also
describes data alignment needs of the DMA engine.

Traffic patterns can be bursty or sustained, and packets sizes can be fixed or random.
Packets can fit in a single descriptor, or might be required to span across multiple
descriptors. The software needs to be able to deal with different traffic patterns, and hence,
cannot decide in advance the number of packets to be transmitted and set up a descriptor
chain for them. Also, on the receive side, the actual packet might be smaller than the
original buffer provided to accommodate it.

It is therefore required that:

• The software and hardware can each independently work on a set of buffer
descriptors in a supplier-consumer model.

• The software is informed of packets being received and transmitted as they happen.

• On the receive side, the software needs a way to know the size of the packet.

The rest of this section describes how the driver uses the features provided by the DMA to
achieve these requirements. Refer to Scatter-Gather Packet DMA, page 47 and the
Northwest Logic Packet DMA User Guide [Ref 9] to get an overview of the DMA
descriptors and DMA register space.

Dynamic DMA Updates

This section describes how the descriptor ring is managed in the Transmit or
System-to-Card (S2C) and Receive or Card-to-System (C2S) directions.

Initialization Phase

The driver prepares descriptor rings for each DMA channel, each containing a number of
descriptors that can be set via a compile-time macro. In the current design, the driver
prepares four rings.

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 77
UG379 (v1.0) October 5, 2010

Software Design

Transmit (S2C) Descriptor Management

Table 3-15 presents some of the terminology used in this section.

In Figure 3-16, the dark blocks indicate descriptors that are under hardware control, and
the light blocks indicate descriptors that are under software control.

Transmit Initialization Phase

• The driver initializes HW_Next and SW_Next registers to the start of the ring.

• The driver resets the HW_Completed register.

• The driver initializes and enables the DMA engine.

Packet Transmission

• The packet is generated by the packet handler.

• The packet is attached to one or more descriptors in the ring.

• The driver marks SOP, EOP and IRQ_on_completion in descriptors.

• The driver updates the SW_Next register.

Post-Processing

• The driver checks for completion status in the descriptor.

• The driver frees the packet buffer.

This process continues as the driver keeps adding packets for transmission, and the DMA
engine keeps consuming them. Because the descriptors are already arranged in a ring,
post-processing of descriptors is minimal, and dynamic allocation of descriptors is not
required.

Table 3-15: Terminology Summary

Term Description

HW_Completed
The register with the address of the last descriptor that the DMA engine
has completed processing.

HW_Next
The register with the address of the next descriptor that the DMA engine
will process.

SW_Next
The register with the address of the next descriptor that software will
submit for DMA.

X-Ref Target - Figure 3-16

Figure 3-16: Transmit Descriptor Ring Management

1 2 3

SW_Next SW_NextHW_Next

UG379_c3_16_091510

HW_Next

SW_Next HW_Next

HW_Completed

http://www.xilinx.com

78 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Chapter 3: Functional Description

Receive (C2S) Descriptor Management

In Figure 3-17, the dark blocks indicate descriptors that are under hardware control, and
the light blocks indicate descriptors that are under software control.

Receive Initialization Phase

• The driver initializes each receive descriptor with an appropriate data buffer.

• The driver initializes the HW_Next register to the start of the ring and the SW_Next
register to the end of the ring.

• The driver resets the HW_Completed register.

• The driver initializes and enables the DMA engine.

Post-Processing after Packet Reception

• The driver checks for completion status in the descriptor.

• The driver checks for SOP, EOP, and User Status information.

• The driver discards the completed packet buffer(s).

• The driver allocates a new packet buffer for the descriptor.

• The driver updates the SW_Next register.

This process continues as the DMA engine keeps adding received packets in the ring, and
the driver keeps consuming them. Because the descriptors are already arranged in a ring,
post-processing of descriptors is minimal, and dynamic allocation of descriptors is not
required.

For more documentation on the software driver, refer to the
v6_pcie_10Gdma_ddr3_xaui_axi/driver/html folder.

X-Ref Target - Figure 3-17

Figure 3-17: Receive Descriptor Ring Management

1 2 3

HW_Next SW_Next

SW_Next

SW_Next

UG379_c3_17_091510

HW_Next HW_Completed
HW_Completed

HW_Next

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 79
UG379 (v1.0) October 5, 2010

Chapter 4

Performance Estimation

This chapter presents a theoretical estimation of performance on the PCI Express®
interface, XAUI, and Virtual FIFO. It also presents a method to measure performance.

PCI Express Performance
PCI Express is a serialized, high bandwidth, and scalable point-to-point protocol that
provides highly reliable data transfer operations. The maximum transfer rate for a device
that is PCI Express version 2.0 compliant is either 2.5 Gb/s (Gen1) or 5 Gb/s (Gen2) per
lane. This rate is the raw bit rate per lane per direction and not the actual data transfer rate.
The effective data transfer rate is lower due to protocol overheads and other system design
trade-offs. Refer to the Understanding Performance of PCI Express Systems white paper
[Ref 12] for more information.

The PCI Express link performance together with Packet DMA is estimated under these
assumptions:

• Each buffer descriptor points to a 4 KB data buffer space

• Maximum Payload Size (MPS) = 128 bytes

• Maximum Read Request Size (MRRS) = 128 bytes

• Read Completion Boundary (RCB) = 64 bytes

• TLPs of 3 doublewords considered without extended CRC (ECRC); the total overhead
is 20 bytes

• One ACK is assumed per TLP; the DLLP overhead is eight bytes

• Update FC DLLPs are not accounted for but they affect the final throughput slightly

The performance is projected by estimating the overheads and then calculating the
effective throughput by deducting these overheads.

These conventions are used in the calculations in Table 4-1 and Table 4-2.

• MRD Memory Read transaction

• MWR Memory Write transaction

• CPLD Completion with Data

• C2S Card to System

• S2C System to Card

http://www.xilinx.com

80 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Chapter 4: Performance Estimation

Calculations are done considering unidirectional data traffic, that is, either transmits (data
transfers from System to Card) or receives (data transfers from Card to System). Traffic on
the upstream (Card to System) PCIe® link is bolded and traffic on the downstream (System
to Card) PCIe link is italicized.

The C2S DMA engine (which deals with data reception, that is, writing data to system
memory) first does a buffer descriptor fetch. Using the buffer address in the descriptor, the
C2S DMA engine issues memory writes to the system. When the actual payload is
transferred to the system, it sends a memory write to update the buffer descriptor.
Table 4-1 shows the overhead incurred during data transfer in the C2S direction.

For every 128 bytes of data sent from card to the system, the overhead on the upstream link
(bolded) is 21.875 bytes:

The percent overhead = 21.875/ (128 + 21.875) = 14.60%

The throughput per PCIe lane is 2.5 Gb/s; however, because of 8B/10B encoding, the
throughput is reduced to 2 Gb/s.

• The maximum theoretical throughput per lane for receive operations is:

(100 – 14.60)/100 x 2 = 1.70 Gb/s

• The maximum theoretical throughput for a x4 lane at 5.0 Gb/s or a x8 lane at 2.5 Gb/s
link for receive operations is:

13.6 Gb/s

The S2C DMA engine (which deals with data transmission, that is, reading data from
system memory) first does a buffer descriptor fetch. Using the buffer address in the
descriptor, it issues memory read requests and receives data from system memory through
completions. When the actual payload is transferred from the system, it sends a memory
write to update the buffer descriptor. Table 4-2 shows the overhead incurred during data
transfers in the S2C direction.

Table 4-1: PCI Express Performance Estimation with DMA in the C2S Direction

Transaction Overhead ACK Overhead Comment

MRD:
C2S Descriptor = 20/4096 = 0.625/128

8/4096 = 0.25/128 One descriptor fetch in the C2S engine for 4 KB
data (AXI4-Stream interface - TX); 20 bytes of
TLP overhead and 8 bytes of DLLP overhead.

CPLD:
C2S Descriptor = 20 + 32/4096 = 1.625/128

8/4096 = 0.25/128 Descriptor reception C2S engine (AXI4-Stream
interface - RX). The CPLD header is 20 bytes, and
the C2S Descriptor data is 32 bytes.

MWR:
C2S Buffer = 20/128

8/128 MPS = 128B; Buffer write C2S engine
(AXI4-Stream interface- TX).

MWR:
C2S Descriptor = 20+12/4096 = 1/128

8/4096 = 0.25/128 Descriptor update C2S engine (AXI4-Stream
interface - TX). The MWR header is 20 bytes, and
the C2S Descriptor update data is 12 bytes.

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 81
UG379 (v1.0) October 5, 2010

PCI Express Performance

For every 128 bytes of data sent from system to card, the overhead on the downstream link
(italicized) is 50.125 bytes.

The percent overhead = 50.125/128 + 50.125 = 28.14%

The throughput per PCIe lane is 2.5 Gb/s; however, because of 8B/10B encoding, the
throughput is reduced to 2 Gb/s.

• The maximum theoretical throughput per lane for transmit operations is:

(100 – 28.14)/100 x 2 = 1.43 Gb/s

• The maximum theoretical throughput for a x4 lane at 5.0 Gb/s or a x8 lane at 2.5 Gb/s
link for transmit operations is:

11.44 Gb/s

Because the TRD has two datapaths (one XAUI path and one video path), there are two
C2S DMA engines and two S2C DMA engines. Each C2S and S2C engine should be able to
operate at 13.6 Gb/s and 11.44 Gb/s, respectively. If both paths are enabled, the DMA
splits the available bandwidth between the two C2S engines and two S2C engines.

The throughput numbers are theoretical and could be reduced further due to other factors:

• With an increase in lane width, PCIe credits are consumed at a faster rate, which could
lead to throttling on the PCIe link, reducing throughput.

• The transaction interface of PCIe is 64 bits wide. The data sent is not always 64-bit
aligned, which could cause reduction in throughput.

• Changes in MPS, MRRS, RCB, and buffer descriptor size also have significant impact
on throughput.

• If bidirectional traffic is enabled, more overhead is incurred, thus leading to reduced
throughput.

• Software overhead and latencies also contribute to reduction in throughput.

Table 4-2: PCI Express Performance Estimation with DMA in the S2C Direction

Transaction Overhead ACK Overhead Comment

MRD:
S2C Descriptor = 20/4096 = 0.625/128

8/4096 = 0.25/128
Descriptor fetch in the S2C engine (AXI4-Stream
interface- TX).

CPLD:
S2C Descriptor = 20 + 32/4096 = 1.625/128 8/4096 = 0.25/128

Descriptor reception S2C engine (AXI4-Stream
interface - RX). The CPLD header is 20 bytes, and
the S2C Descriptor data is 32 bytes.

MRD:
S2C Buffer = 20/128

8/128
Buffer fetch S2C engine (AXI4-Stream interface -
TX). MRRS = 128 bytes.

CPLD:
S2C Buffer = 20/64 = 40/128 8/64 = 16/128

Buffer reception S2C engine (AXI4-Stream interface
- RX). Because RCB = 64 bytes, 2 completions are
received for every 128-byte read request.

MWR:
S2C Descriptor = 20 + 4/4096 = 0.75/128 8/4096 = 0.25/128

Descriptor update S2C engine (AXI4-Stream
interface - TX). The MWR header is 20 bytes, and
the S2C Descriptor update data is 12 bytes.

http://www.xilinx.com

82 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Chapter 4: Performance Estimation

Virtual FIFO Performance
For the Virtual FIFO, the theoretical maximum bandwidth to the DDR3 memory is
51.2 Gb/s.

• Maximum I/O rate (double data rate) = 400 MHz x 2 = 800 Mb/s

• Maximum bandwidth = (Maximum I/O rate) x (Number of I/Os) = 800 Mb/s x 64 =
51.2 Gb/s

The inputs to the Virtual FIFO from the DMA side are 64 bits x 250 MHz = 16 Gb/s, which
can support the bandwidth from the DMA. The data bandwidth to and from the DDR3
memory is a percentage of the total bandwidth on the 64-bit I/O lines. For the Virtual
FIFO, data bandwidth efficiency is expected to be between 80% to 90%.

An estimate of Memory Controller performance for burst size of 128 is calculated below.
With larger burst lengths, higher efficiency can be achieved.

With a 64-bit port using a burst length of 128, a total of 8192 bits are transferred. The
number of bits transferred per cycle is:

64 (bit width) x 2 (double data rate) = 128 bits per cycle

The total cycles used for 8192 bits is:

8192/128 = 64 cycles per transfer

Assuming the read to write overhead is 10 cycles, the percent efficiency is:

64/74 = 86% efficiency

Assuming 5% efficiency overhead for refreshing, the total efficiency is about 81%.

Table 4-3 lists the estimated performance of the Virtual FIFO.

Because the Maximum Theoretical throughput numbers on the PCIe link with the DMA
overhead are less than what the Virtual FIFO can handle, the DMA is the limiting
component in this TRD.

Table 4-3: Projected Performance of Multiport Virtual FIFO

Virtual FIFO Throughput (Gb/s) Comments

Total Throughput 51.2 x 0.8= 40.9 80% efficiency

Total Throughput 51.2 x 0.9= 46 90% efficiency

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 83
UG379 (v1.0) October 5, 2010

XAUI Performance

XAUI Performance
On the XAUI side of the Virtual FIFO, the interface runs at 64 x 156.25 = 10 Gb/s. The
overhead for XAUI is shown in Table 4-4. For small packets, the overhead is fairly high,
resulting in a 7.2 Gb/s bandwidth. However, for very large packets, the overhead is
negligible, and the bandwidth is very close to the theoretical maximum.

Measuring Performance
This section shows how performance is measured in the TRD. PCI Express performance is
dependent on factors like Maximum Payload Size, Maximum Read Request Size, and Read
Completion Boundary, which are dependent on the systems used. With higher MPS
values, performance improves as the packet size increases.

Hardware provides the registers listed in Table 4-5 for software to aid performance
measurement.

These registers are updated once every second by hardware. Software can read them
periodically at one second intervals to directly get the throughput.

The performance monitor registers can be read to understand transaction layer utilization
for PCIe. The DMA registers provide throughput measurements for actual payload
transferred. These registers give a good estimate of the TRD performance.

Table 4-4: Projected Performance of XAUI Interface

XAUI Item Bytes Per Packet Comments

Start/Term Character 2 Term can be followed by idle bytes, but these are not counted.

Minimum IFG 24 3 clock beats is the minimum IFG set in the TRD.

Total 26 26/(64 + 26) = 28.8% for the minimum packet size or 7.2 Gb/s
26/(16384 + 26) = 0.16% for the maximum packet size or 9.9 Gb/s

Table 4-5: Performance Registers in Hardware

Register Description

DMA Completed Byte Count DMA implements a completed byte count register per
engine, which counts the payload bytes delivered to the
user on the streaming interface.

TX Utilization This register counts traffic on the AXI4-Stream interface in
the transmit direction, includes TLP headers for all
transactions.

RX Utilization This register counts traffic on the AXI4-Stream interface in
the receive direction, includes TLP headers for all
transactions.

TX Payload This register counts payload for memory write
transactions upstream, which includes buffer write and
descriptor updates.

RX Payload This register counts the payload for completion
transactions downstream, which includes descriptor or
data buffer fetch completions.

http://www.xilinx.com

84 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Chapter 4: Performance Estimation

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 85
UG379 (v1.0) October 5, 2010

Chapter 5

Designing with the TRD Platform

The TRD platform acts as a framework for system designers to derive extensions or modify
designs. This chapter outlines various ways for a designers to evaluate, modify, and re-run
the TRD for the connectivity platform.

The suggested modifications are grouped under these categories:

• Software-only modifications: Modify software component only (drivers, demo
parameters, etc.). The design does not need to be re-implemented.

• Design (top-level only) modifications. Changes to parameters in the top-level of the
design. Modify hardware component only (change parameters of individual IP
components and custom logic). The design must be re-implemented through the
ISE® tool.

• Architectural changes. Modify hardware and software components. The design must
be re-implemented through the ISE tool.

• Remove/add IP blocks with similar interfaces (supported by Xilinx and its partners).
The user needs to do some design work to ensure the new blocks can communicate
with the existing interfaces in the framework.

• Add new IP so as to not impact any of the interfaces within the framework. The user
is responsible for ensuring that the new IP does not break the functionality of the
existing framework.

All of these use models are fully supported by the framework provided that the
modifications do not require the supported IP components to operate outside the scope of
their specified functionality.

This chapter provides examples to illustrate some of these use models. While some are
simple modifications to the design, others involve replacement or addition of new IP. The
new IP could come from Xilinx (and its partners) or from the customer’s internal IP
activities.

Software-Only Modifications
This section describes modifications to the platform done directly in the software driver.
The same hardware design (BIT/MCS files) works.

Macro-Based Modifications
This section describes the modifications, which can be realized by compiling the software
driver with various macro options, either in the Makefile or in the driver source code.

http://www.xilinx.com

86 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Chapter 5: Designing with the TRD Platform

Descriptor Ring Size

The number of descriptors to be set up in the descriptor ring can be defined as a compile
time option through a macro provided in the Makefile.

To change the size of the buffer descriptor ring used for DMA operations, modify
DMA_BD_CNT in v6_pcie_10Gdma_ddr3_xaui_axi/driver/xdma/
xdma_base.c. Smaller rings can affect throughput adversely, which can be observed by
running the performance tests.

A larger descriptor ring size uses additional memory but improves performance because
more descriptors can be queued to hardware.

Log Verbosity Level

To control the log verbosity level:

• Add DEBUG_VERBOSE in the Makefiles to cause the drivers to generate verbose
logs.

• Add DEBUG_NORMAL in the Makefiles to cause the drivers to generate
informational logs.

• Remove both these macros from the Makefiles to cause the drivers to only generate
error logs.

Changes in the log verbosity are observed when examining the system logs. Increasing the
logging level also causes a drop in throughput.

Driver Mode of Operation

The base DMA driver can be configured to run in either interrupt mode with MSI
interrupts or in polled mode. Only one mode can be selected. To control the drive:

• Add TH_BH_ISR in the Makefile to run the base DMA driver in interrupt mode

• Remove TH_BH_ISR in the Makefile to run the base DMA driver in polled mode

Note: The interrupt mode has had only limited testing in hardware.

Size of Block Data
To modify the default amount of data being transmitted and received in the raw data and
XAUI drivers:

• Modify PKTSIZE in
v6_pcie_10Gdma_ddr3_xaui_axi/driver/xrawdata/user.c
or v6_pcie_10Gdma_ddr3_xaui_axi/driver/xaui/user.c to change the
default packet size. This also modifies the size of the block read out from the DDR3
memory in the receive direction.

• Modify NUM_BUFS in
v6_pcie_10Gdma_ddr3_xaui_axi/driver/xrawdata/user.c
or v6_pcie_10Gdma_ddr3_xaui_axi/driver/xaui/user.c to change the
number of buffers in the free pool available to the drivers. This modification changes
the throughput observed with these drivers.

Note: The available system memory must not be exceeded when these defaults are changed.

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 87
UG379 (v1.0) October 5, 2010

Top-Level Design Modifications

Software Driver Code Modifications
This section describes the modifications done to software driver code only to see a change
in design behavior or performance.

The Block Data handler for raw data (v6_pcie_10Gdma_ddr3_xaui_axi/driver/
xrawdata/user.c) can be modified as follows:

Data is written into DDR3 memory in a flat, unstructured manner, with known patterns. It
is possible to create a packet format with some form of CRC, which can then be verified on
the receive path.

Packets are generated and verified within the driver and are not conveyed to or from any
real user application as data. One suggested modification is to transfer this data between
the driver and a user application. This requires significant changes in the driver entry
points and in the driver’s PutPkt() and GetPkt() routines. The data is transmitted
(written) into DDR3 memory, and is looped back and received (read) from DDR3 memory.

Top-Level Design Modifications
This section describes changes to parameters in the top-level design file that can change the
design behavior. Modifications to the software driver might be required based on the
parameters being changed.

Hardware-Only Modifications
This section outlines the changes that require only hardware re-implementation.

Configuring the PCIe Link as x4 Lane at 2.5 Gb/s

The Virtex®-6 FPGA Integrated Block for PCI Express® can be configured as x4 at a
2.5 Gb/s (Gen1) link rate instead of x4 at a 5 Gb/s (Gen2) link rate, taking a hit in
performance. Selecting the option to configure the reference design with a x4 PCIe® link at
2.5 Gb/s in the implement script automatically sets the parameters required for this
change in the top-level design file. This option is enabled by this command:

$ source implement.sh x4 gen1 (for Linux)

$ implement.bat -lanemode x4gen1 (for Windows)

The implement script is available in the v6_pcie_10Gdma_ddr3_xaui_axi/design/
implement directory of the TRD. After configuring the FPGA with the new bitstream, the
user can rerun the TRD (refer to Reprogramming the TRD, page 39 to configure the FPGA).
The results of the performance evaluation should be lower than the original version of the
TRD.

http://www.xilinx.com

88 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Chapter 5: Designing with the TRD Platform

Hardware and Software Modifications
This section outlines changes to be done to the top-level design file
(v6_pcie_10Gdma_ddr3_xaui.v) that also require software driver modifications.

PCIe Vendor and Device ID

PCIe vendor ID and device ID can be updated through these local parameters (localparam)
in the top-level file:

• VENDOR_ID in the file v6_pcie_10Gdma_ddr3_xaui_axi/design/source/
v6_pcie_10Gdma_ddr3_xaui.v changes the vendor ID.

• DEVICE_ID in the file v6_pcie_10Gdma_ddr3_xaui_axi/design/source/
v6_pcie_10Gdma_ddr3_xaui.v changes the device ID.

The software then requires a corresponding change:

• Change the PCI_VENDOR_ID_DMA macro in
v6_pcie_10Gdma_ddr3_xaui_axi/driver/xdma/xdma_base.c.

• Change the PCI_DEVICE_ID_DMA macro in v6_pcie_10Gdma_ddr3_xaui_axi/
driver/xdma/xdma_base.c.

Refer to Appendix C, Directory Structure to navigate to the required files.

Architectural Modifications
This section describes architecture level changes to the functionality of the platform. These
include adding or deleting IP with similar interfaces used in the framework.

Aurora IP Integration
The LogiCORE™ IP Aurora 8B/10B core implements the Aurora 8B/10B protocol using
the high-speed Virtex-6 FPGA GTX transceivers. The core is a scalable, lightweight link
layer protocol for high-speed serial communication. It is used to transfer data between two
devices using transceivers. It provides an easy-to-use LocalLink compliant framing
interface.

A 4-lane Aurora design with 2-byte user interface data width presents a 64-bit LocalLink
user interface, which matches the XAUI core’s interface in the framework. Hence, a
customer can accelerate the task of creating a PCIe and Aurora design through these
high-level steps:

1. Generate a four-lane (3.125 Gb/s line rate) and two-byte Aurora 8B/10B LogiCORE IP
from CORE Generator™ software.

2. Remove the XAUI LogiCORE block instance and its associated blocks, such as CRC
and Control blocks.

3. Insert the Aurora LogiCORE IP into the framework.

4. Modify the XGMII TX and XGMII RX blocks to create a LocalLink adaptation layer for
Aurora (shown as Aurora TX and Aurora RX in Figure 5-1).

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 89
UG379 (v1.0) October 5, 2010

Architectural Modifications

5. Simulate the design with the out-of-box simulation framework with appropriate
modifications to include the Aurora files.

6. Implement the design and run the design with Aurora in loopback mode with minimal
changes to the implementation flow.

Aurora IP does not support throttling in the receive direction because the core has no
internal buffers. The Virtual FIFO in the datapath allows the user to drain packets at the
line rate. The Native Flow Control feature of Aurora can also be used to manage flow
control.

As per the Aurora protocol, the round trip delay through the Aurora interfaces between
the NFC request and the first pause arriving at the originating channel partner must not
exceed 256 symbol times.

For 4 lanes at the 3.125 Gb/s rate, 4 symbols = 10 x 330 ps = 3.3 ns

For a 256 symbol time, 64 x 3.3 = 212 ns

For a 156.25 MHz clock (8 ns period), this is 27 clock cycles (the worst case delay),
amounting to a FIFO depth of 27, which is required to hold data received on the Aurora RX
interface after an NFC request to pause data is initiated. The user must appropriately
configure the watermarks of the Virtual FIFO with this value to prevent Virtual FIFO
overflows.

X-Ref Target - Figure 5-1

Figure 5-1: Integrating Aurora

Packet
DMA

C
2S

S
2C

C
2S

S
2C

P
C

Ie
 x

4
Li

nk

Third Party IP FPGA Logic

Custom Adaptation Block

64
-b

it
A

X
I4

-S
tr

ea
m

 In
te

rf
ac

e
@

 2
50

 M
H

z

Register
Interface

Performance
Monitor

User Space
Registers

Packet
Control
+CRC

S2C_Ctrl

S2C_Data

64

G
T

X
 T

ra
ns

ce
iv

er
s

x4
 @

 5
 G

b/
s

Li
nk

 R
at

e
In

te
gr

at
ed

 B
lo

ck
 fo

r
 P

C
I E

xp
re

ss
, v

2.
0

W
ra

pp
er

 F
or

 P
C

I E
xp

re
ss

Xilinx IPIntegrated Blocks

Native
Interface
of DDR3
Memory

Controller

Multiport
Virtual
FIFO

UG379_c5_01_092910

Control

WR_Data

64

Packet
Control
+CRC

C2S_Ctrl

C2S_Data

64

Aurora
TX

A
ur

or
a

G
T

X
 T

ra
ns

ce
iv

er
s

Control

RD_Data

64

Control

Data

64

Aurora
RX

Control

WR_Data

64

Control

Data

64

@400 MHz
@200 MHz

@250 MHz

@156.25 MHz@250 MHz@250 MHz

@250 MHz@250 MHz

@156.25 MHz

DDR3
64

Control

RD_Data

64

Control

S2C_Ctrl

S2C_Data

64

Control

WR_Data

64

Control

C2S_Ctrl

C2S_Data

64

Control

RD_Data
64

Control

WR_Data

64

256

256

Control

RD_Data

64

Generate from CORE Generator Software

R
aw

 D
at

a
Lo

op
ba

ck

Generator

Checker

http://www.xilinx.com

90 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Chapter 5: Designing with the TRD Platform

With a minor change of disabling the CRC check on data, the XAUI driver can be reused
for Aurora. The data generated by the block handler for XAUI can now drive traffic over
Aurora instead of XAUI. The Aurora serial interface needs to be looped back externally or
connected to another Aurora link partner.

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 91
UG379 (v1.0) October 5, 2010

Appendix A

Resource Utilization

Table A-1 and Table A-2 list the resource utilization obtained from the map report during
the implementation phase. The XC6VLX240T-1-FF1156 is the target FPGA.

Note: The reported utilization numbers are obtained with the specific options set for synthesis and
implementation of the design. Refer to the implement script to find the options that are set. A change
in the default options will result in a change in the utilization numbers.

Table A-1: Resources for the TRD with the PCIe® Link Configured as x4 at a 5 Gb/s
Link Rate

Resource Utilization Total Available
Percentage

Utilization (%)

Slice registers 31,860 301,440 10

Slice LUTs 29,012 150,720 19

Bonded IOB 123 600 20

RAMB36E1 95 416 22

BUFG/BUFGCTRL 10 32 31

MMCM_ADV 2 12 16

GTXE1 8 20 40

PCIE_2_0 1 1 100

Table A-2: Resources for the TRD with the PCIe Link Configured as x8 at a 2.5 Gb/s
Link Rate

Resource Utilization Total Available
Percentage

Utilization (%)

Slice registers 32,222 301,440 10

Slice LUTs 29,349 150,720 19

Bonded IOB 123 600 20

RAMB36E1 95 416 22

BUFG/BUFGCTRL 10 32 32

MMCM_ADV 2 12 16

GTXE1 12 20 60

PCIE_2_0 1 1 100

http://www.xilinx.com

92 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Appendix A: Resource Utilization

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 93
UG379 (v1.0) October 5, 2010

Appendix B

Register Descriptions

This appendix is a quick reference that describes registers most commonly accessed by the
software driver. For all registers as well as further details, refer to the specific user guides.

The registers implemented in hardware are mapped to base address register (BAR0) in
PCI Express®. Table B-1 shows the mapping of multiple Packet DMA channel registers
across the BAR.

Registers for interrupt handling in the Packet DMA are grouped under a category called
common registers, which are offset from BAR0 by 0x4000.

Figure B-1 shows the layout of registers.

Table B-1: Packet DMA Channel Register Address

Packet DMA Channel Offset from BAR0

DMA Channel 0 S2C 0x0

DMA Channel 1 S2C 0x100

DMA Channel 0 C2S 0x2000

DMA Channel 1 C2S 0x2100

X-Ref Target - Figure B-1

Figure B-1: Register Map

Northwest Logic Packet DMA User RegistersEndpoint Block
for PCI Express

BAR0 Register Interface

UG379_aB_01_090910

DMA Engine Control

Engine Registers

BAR0 + 0x4000

User App0

User App1

Utilization-TX

Utilization-RX

DMA Common
Control_Status

Reg_Next_Desc_Ptr

Reg_SW_Desc_Ptr

DMA Completed Byte
Count

http://www.xilinx.com

94 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Appendix B: Register Descriptions

The user logic registers are mapped as shown in Table B-2.

Packet DMA Registers
This section describes the prominent Packet DMA registers used frequently by the
software driver. For a detailed description of all registers available, refer to the Northwest
Logic Back End Core User Guide [Ref 9].

Packet DMA Channel-Specific Registers
The registers described in this section are present in all Packet DMA channels. The address
of the register is the DMA channel address offset from BAR0 (refer to Table B-1) plus the
register offset.

Engine Control (0x0004)

Table B-3 defines the bits within the DMA Engine Control register.

Table B-2: User Register Address Offsets

User Logic Register Group Range (Offset from BAR0)

Utilization Registers 0x8200 - 0x82FF

User App0 Registers 0x9000 - 0x90FF

User App1 Registers 0x9100 - 0x91FF

Table B-3: DMA Engine Control Register

Bit Field Mode
Default
Value

Description

0 Interrupt Enable RW 0 This bit enables interrupt generation.

1 Interrupt Active RW1C 0 This bit is set whenever an interrupt event occurs. Write a 1 to
clear this bit.

2 Descriptor Complete RW1C 0
This bit is set when the interrupt on completion bit is set in the
descriptor.

3 Descriptor Alignment Error RW1C 0
This bit is set when the descriptor address is unaligned and that
DMA operation is aborted.

4 Descriptor Fetch Error RW1C 0 This bit is set when the descriptor fetch errors out. That is, the
completion status is not successful.

5 SW_Abort_Error RW1C 0 This bit is set when the software aborts the DMA operation.

8 DMA Enable RW 0
When set, this bit enables the DMA engine. Once enabled, the
engine compares the next descriptor pointer and software
descriptor pointer to begin execution.

10 DMA_Running RO 0 This bit indicates the DMA is in operation.

11 DMA_Waiting RO 0
This bit indicates the DMA is waiting for software to provide
more descriptors.

14 DMA_Reset_Request RW 0
When set, this bit issues a request to user logic connected to the
DMA to abort the outstanding operation and prepare for reset.
This bit is cleared when the user acknowledges the reset request.

15 DMA_Reset RW 0
When set, this bit resets the DMA engine and issues a reset to
user logic.

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 95
UG379 (v1.0) October 5, 2010

Packet DMA Registers

Next Descriptor Pointer (0x0008)

Table B-4 defines the fields within the DMA Next Descriptor Pointer register.

Software Descriptor Pointer (0x000C)

Table B-5 defines the fields within the DMA Software Description Pointer register.

Completed Byte Count (0x001C)

Table B-6 defines the fields within the DMA Completed Byte Count register.

Table B-4: DMA Next Descriptor Pointer Register

Bit Field Mode Default Value Description

[4:0] Reserved RO 5'b00000 This field is required for 32-byte alignment.

[31:5] Reg_Next_Desc_Ptr RW 0

The Next Descriptor Pointer is writable when the DMA
is not enabled. It is read only when the DMA is enabled.
This field should be written to initialize the start of a
new DMA chain.

Table B-5: DMA Software Descriptor Pointer Register

Bit Field Mode Default Value Description

[4:0] Reserved RO 5'b00000 This field is required for 32-byte alignment.

[31:5] Reg_SW_Desc_Ptr RW 0
The Software Descriptor Pointer contains the location of
the first descriptor in the chain, which is still owned by
the software.

Table B-6: DMA Completed Byte Count Register

Bit Field Mode Default Value Description

[1:0] Sample Count RO 0 This sample count is incremented every
time a sample is taken at 1 second intervals.

[31:2] DMA_Completed_Byte_Count RO 0

The completed byte count field records the
number of bytes that transferred in the
previous 1 second. This field has a four-byte
resolution.

http://www.xilinx.com

96 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Appendix B: Register Descriptions

Common Registers
The registers described in this section are common to all engines. These are located at the
given offsets from BAR0.

Common Control and Status (0x4000)

Table B-7 defines the fields within the DMA Common Control and Status register.

Table B-7: DMA Common Control and Status Register

Bit Field Mode Default Value Description

0
Global DMA Interrupt

Enable
RW 0

This bit globally enables or disables interrupts for all
DMA engines.

1 Interrupt Active RO 0
This bit reflects the state of the DMA interrupt
hardware output when the state is global interrupt
enable.

2 Interrupt Pending RO 0
This bit reflects the state of the DMA interrupt output
without regard to the state of the global interrupt
enable.

3 Interrupt Mode RO 0 0: MSI mode
1: Legacy interrupt mode

4 User Interrupt Enable RW 0 This bit enables generation of user interrupts.

5 User Interrupt Active RW1C 0 This bit indicates user interrupts are active.

[23:16] S2C Interrupt Status RO 0
Bit [i] indicates the interrupt status of S2C DMA
engine [i]. If the S2C engine is not present, this bit
reads as 0.

[31:24] C2S Interrupt Status RO 0
Bit [i] indicates the interrupt status of C2S DMA
engine [i]. If the C2S engine is not present, this bit
reads as 0.

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 97
UG379 (v1.0) October 5, 2010

User Application Registers

User Application Registers
This section describes the user application registers in detail. All registers are 32 bits wide.
Bit-fields not defined are considered to be reserved, where a read always returns a value of
zero.

Design Version Register
This subsection defines the register used to identify the design version being used.

Design Version (0x8000)

This registers allows the driver to determine the design version, the device the design is
targeted at, and whether it uses AXI interfaces or non-AXI interfaces.

Performance Monitor Registers
This subsection defines the registers implemented for measuring PCIe transaction
utilization.

Transmit Utilization Byte Count (0x8200)

This register counts the utilization on the transmit signals of the AXI4-Stream interface of
the Virtex-6 FPGA Integrated Block for PCI Express (see Table B-9). It increments every
clock cycle when both s_axis_tx_tvalid and s_axis_tx_tready are asserted.

Table B-8: Design Version Register

Bit Field Mode Default Value Description

[3:0] Sub-version number RO 0000

0000:for designs using the PCIe TRN
(Transaction) interface

0001: for designs using the PCIe
AXI4-Stream interface

[11:4] Version number RO
Matches the ZIP

file version
Example: for v1.3 of the ZIP file, version
number is b'0001_0011.

[27:12] Reserved RO 0
These bits are reserved and return zero on
a READ.

[31:28] Targeted Device RO 0001 0001 for Virtex®-6 FPGAs

Table B-9: Transmit Utilization Byte Count Register

Bit Field Mode Default Value Description

[1:0] Sample Count RO 0
This two-bit sample count increments
once every second.

[31:2] Transmit Utilization Count RO 0

This field contains the utilization count
when the signals on the AXI4-Stream
interface in the transmit direction are
active. This register has a resolution of
four bytes. To get the byte count, multiply
the value obtained by 4 to get the byte
count.

http://www.xilinx.com

98 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Appendix B: Register Descriptions

Receive Utilization Byte Count (0x8204)

This register counts the utilization on the receive signals of the AXI4-Stream interface of the
Virtex-6 FPGA Integrated Block for PCI Express (see Table B-10). It increments every clock
cycle when both m_axis_rx_tvalid and m_axis_rx_tready are asserted.

Upstream Memory Write Byte Count (0x8208)

This register counts the payload of memory write transactions sent upstream on the
transmit path of the AXI4-Stream interface of the Virtex-6 FPGA Integrated Block for PCI
Express (see Table B-11).

Downstream Completion Payload Byte Count (0x820C)

This register counts the payload of completion transactions received at the endpoint on the
receive path of the AXI4-Stream interface of the Virtex-6 FPGA Integrated Block for PCI
Express.

Table B-10: Receive Utilization Byte Count

Bit Field Mode Default Value Description

[1:0] Sample Count RO 0
This two-bit sample count increments once
every second.

[31:2] Receive Utilization Count RO 0

This field contains the utilization count
when the signals on the AXI4-Stream
interface in the receive direction are active.
This register has a resolution of four bytes.
To get the byte count, multiply the value
obtained by 4 to get the byte count.

Table B-11: Upstream Memory Write Byte Count

Bit Field Mode Default Value Description

[1:0] Sample Count RO 0
This two-bit sample count increments once
every second.

[31:2] MWR Payload Count RO 0

This field contains the number of MWR
payload bytes sent across the AXI4-Stream
interface in the transmit direction. This
register has a resolution of four bytes. To get
the byte count, multiply the value obtained by
4.

Table B-12: Downstream Completion Payload Byte Count

Bit Field Mode Default Value Description

[1:0] Sample Count RO 0
This two-bit sample count increments once
every second.

[31:2] CplD Payload Count RO 0

This field contains the number of CplD
payload bytes received across the AXI4-Stream
interface in the receive direction. This register
has a resolution of four bytes. To get the byte
count, multiply the value obtained by 4.

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 99
UG379 (v1.0) October 5, 2010

User Application Registers

Initial Flow Control Credits for Completion Data for the PCIe Downstream
Port (0x8210)

This register reports the initial flow control credits of the host system (see Table B-13).

Initial Flow Control Credits for Completion Header for the PCIe Downstream
Port (0x8214)

This register reports the initial flow control credits of the host system (see Table B-14).

Initial Flow Control Credits for Non-Posted Data for the PCIe Downstream
Port (0x8218)

This register reports the initial flow control credits of the host system (see Table B-15).

Initial Flow Control Credits for Completion Non-Posted Header for the PCIe
Downstream Port (0x821C)

This register reports the initial flow control credits of the host system (see Table B-16).

Initial Flow Control Credits for Posted Data for the PCIe Downstream Port
(0x8220)

This register reports the initial flow control credits of the host system (see Table B-17).

Table B-13: Initial Flow Control Credits for Completion Data for the Host System

Bit Field Mode Default Value Description

[11:0] INIT_FC_CPLD RO 0
After link training, the host system advertises its
initial flow control credits. The flow control credits
for completion data is captured in this register

Table B-14: Initial Flow Control Credits for Completion Header for the Host System

Bit Field Mode Default Value Description

[7:0] INIT_FC_CPLH RO 0
After link training, the host system advertises its
initial flow control credits. The flow control credits
for completion header is captured in this register.

Table B-15: Initial Flow Control Credits for Non-Posted Data for the Host System

Bit Field Mode Default Value Description

[11:0] INIT_FC_NPD RO 0
After link training, the host system advertises its
initial flow control credits. The flow control credits
for non-posted data is captured in this register.

Table B-16: Initial Flow Control Credits for Non Posted Header for the Host System

Bit Field Mode Default Value Description

[7:0] INIT_FC_NPH RO 0
After link training, the host system advertises its
initial flow control credits. The flow control credits
for non-posted header is captured in this register.

http://www.xilinx.com

100 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Appendix B: Register Descriptions

Initial Flow Control Credits for Posted Header for the PCIe Downstream Port
(0x8224)

This register reports the initial flow control credits of the host system.

User App0 Registers
This section defines the registers specific to the XAUI application connected to DMA
channel 0.

XAUI Error (0x9000)

This register indicates fatal and non-fatal errors that might happen on the XAUI path (see
Table B-19). The software needs to reset the DMA in case of fatal errors because the TRD
cannot recover after the error has occurred. The register clears when the software reads it.

Table B-17: Initial Flow Control Credits for Posted Data for the Host System

Bit Field Mode Default Value Description

[11:0] INIT_FC_PD RO 0
After link training, the host system advertises its
initial flow control credits. The flow control credits
for posted data is captured in this register.

Table B-18: Initial Flow Control Credits for Posted Header for the Host System

Bit Field Mode Default Value Description

[7:0] INIT_FC_PH RO 0
After link training, the host system advertises its
initial flow control credits. The flow control credits
for posted header is captured in this register.

Table B-19: XAUI Error

Bit Field Mode Default Value Description

0 TX ERR - Fatal RO 0

If XGMII alignment logic reads from an empty
virtual FIFO or reads less than eight bytes on a
clock, then the current packet on the XAUI path is
corrupted, and this bit is set.

1 Packet Length ERR - Fatal RO 0

This bit is set if the length field of the XAUI packet
does not match the actual payload. This bit is also
set when SOP on a packet is set and EOP is not set.

The length field includes payload size + four bytes
for CRC. Thus this check is based on the length
field – four bytes.

2 Dropped Packet -
Non-Fatal

RO 0
If the header CRC does not check out on a packet,
packet segments might have been dropped. This
can happen if there is congestion on the path.

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 101
UG379 (v1.0) October 5, 2010

User Application Registers

XAUI IFG (0x9004)

This register value increases the inter-frame gap (IFG) between consecutive XAUI transmit
packets by inserting Idles on the lanes (see Table B-20). The software can program this
value if there is a lot of congestion and packets are dropped.

XAUI Config (0x9008)

This register is tied to the configuration vector bits on the XAUI LogiCORE™ block (see
Table B-21). The TRD uses only bit 0 of this register. For more details on the configuration
vector bits, refer to the XAUI LogiCORE IP block [Ref 10].

XAUI Status (0x900C)

This register is tied to status vector bits on the XAUI LogiCORE block. This register
provides information on receiver alignment, link status, and errors on the XAUI transmit
and receive paths. For more details on the status vector bits, refer to the XAUI
LogiCORE IP block [Ref 10].

User App1 Registers
This section defines the register specific to the Raw Data application connected to DMA
channel 1.

Enable Generator (0x9100)

This register is used to enable the data generator in the loopback static module (see
Table B-22). The generator allows receive operations to run independent of transmit
operations on the Raw Data path.

Table B-20: XAUI IFG

Bit Field Mode Default Value Description

[15:0] Inter-Frame Gap RW 0
This field determines the number of Idle cycles to be
inserted between consecutive XAUI transmit packets.

Table B-21: XAUI Config Register

Bit Field Mode Default Value Description

0 Loopback RW 0
This bit sets the serial loopback in the device-specific
transceivers

Table B-22: Enable Generator Register

Bit Field Mode Default Value Description

1
Enable

Generator
RW 0

This bit enables the generator logic on the Raw Data
path. The logic generates data for the Raw data
receive path. If the Enable Generator bit is set to 1, the
Enable Loopback bit must be 0.

http://www.xilinx.com

102 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Appendix B: Register Descriptions

Packet Length (0x9104)

This register configures the fixed length of packets on the Raw Data path (see Table B-23).

Enable Checker or Loopback (0x9108)

This register enables the data checker or enable loopback mode on the receive path (see
Table B-24). If loopback is enabled, the transmit data is not verified by the data checker.

Data Mismatch (0x910C)

This register reports data integrity failures on the Transmit path of the Raw Data path.

Table B-23: Raw Data Packet Length Register

Bit Field Mode Default Value Description

[15:0] Packet Length RW d'768
This field contains the length of packets on the Raw
Data path.

Table B-24: Enable Checker or Loopback Register

Bit Field Mode Default Value Description

0 Enable Checker RW 0

This bit enables the checker logic on the Raw Data
path. The logic checks the data transmitted by the
host. It reports any data mismatches. If the Enable
Checker bit is set to 1, the Enable Loopback bit must
be 0.

1 Enable Loopback RW 0

If this bit is set, the data transmitted by the host is
looped back and sent out on the receive path. If this
bit is set to 1, the Enable Checker and the Enable
Generator bits must be 0.

Table B-25: Data Mismatch on Raw Data Transmit Register

Bit Field Mode Default Value Description

0 Data Mismatch RO 0

If the data checker on the Raw Data path finds a
mismatch between the expected data and data
transmitted by the host, it sets the Data Mismatch
flag. This bit is cleared when Enable Checker is set to
0.

http://www.xilinx.com

Virtex-6 FPGA Connectivity TRD User Guide www.xilinx.com 103
UG379 (v1.0) October 5, 2010

Appendix C

Directory Structure

This appendix describes the directory structure and explains the organization of various
files and folders.

design Folder

The design folder contains all the hardware design deliverables:

• implement: This subfolder contains implementation scripts for the design for both
Microsoft Windows and Linux operating systems.

• ip_cores: This subfolder contains IP cores required for this design and the DMA
design files.

• sim: This subfolder contains simulation scripts for supported simulators for both
Microsoft Windows and Linux operating systems.

• source: This subfolder contains source code deliverable files.

• tb: This subfolder contains testbench related files for simulation.

driver Folder

The driver folder contains all the software driver and application deliverables:

• xdma: This subfolder contains source code for the DMA driver.

• html: This subfolder contains the files generated by Doxygen for the software API
reference.

• xaui: This subfolder contains source code for the XAUI driver.

X-Ref Target - Figure C-1

Figure C-1: Directory Structure

v6_pcie_10Gdma_ddr3_xaui_axi

design

implement

ip_cores

sim

source

tb

driver

xdma

html

xaui

xrawdata

Makefile

readme

v6_trd_app_gui

v6_trd_driver_build

v6_trd_driver_insert

v6_trd_driver_remove

v6_trd_quickstart

UG379_aC_01_090910

doc

xpmon

configuring_ml605

http://www.xilinx.com

104 www.xilinx.com Virtex-6 FPGA Connectivity TRD User Guide
UG379 (v1.0) October 5, 2010

Appendix C: Directory Structure

• xrawdata: This subfolder contains source code for the raw data driver.

• Makefile: This file is used for software driver and application compilation.

doc Folder

The doc folder contains the TRD documentation.

xpmon Folder

The xpmon folder contains source code for the application GUI.

configuring_ml605 Folder

The configuring_ml605 folder contains programming files and scripts to configure the
ML605 board.

Top-Level Files

These files are in the top-level directory:

• readme: This file provides details on the use of simulation and implementation
scripts.

• v6_trd_app_gui: This script is used to invoke the GUI.

• v6_trd_driver_build: This script is used to build the driver and GUI modules.

• v6_trd_driver_insert: This script is used to insert the driver modules.

• v6_trd_driver_remove: This script is used to remove the driver modules.

• v6_trd_quickstart: This script is used to build and insert driver and GUI
modules, invoke the GUI, and remove the driver modules when the user closes the
GUI window.

http://www.xilinx.com

	Virtex-6 FPGA Connectivity Targeted Reference Design with AXI4 Protocol
	Revision History
	Table of Contents
	About This Guide
	Guide Contents
	Additional Documentation
	Additional Support Resources

	Introduction to the Reference Design
	Features

	Getting Started
	Requirements
	Hardware Test Setup Requirements
	Simulation Requirements

	Hardware Test Setup
	Board Setup
	Hardware Bring-Up
	Driver Compilation
	Using the Application GUI
	Exercising Application Logic in Hardware through the GUI
	Shutting Down the System
	Rebuilding the TRD
	Implementing the Design Using Command Line Options
	Implementing the Design Using ISE Project Navigator
	Reprogramming the TRD

	Simulation
	Overview
	Simulating the Design

	Functional Description
	Hardware Design
	Base System Components
	Application Components
	Clocking
	Resets

	Software Design
	Kernel Components
	DMA Operations
	Block Data Handler
	Interrupt Service Routine
	Performance Monitor
	User Hooks
	User Space Components
	DMA Descriptor Management

	Performance Estimation
	PCI Express Performance
	Virtual FIFO Performance
	XAUI Performance
	Measuring Performance

	Designing with the TRD Platform
	Software-Only Modifications
	Macro-Based Modifications
	Size of Block Data
	Software Driver Code Modifications

	Top-Level Design Modifications
	Hardware-Only Modifications
	Hardware and Software Modifications

	Architectural Modifications
	Aurora IP Integration

	Resource Utilization
	Register Descriptions
	Packet DMA Registers
	Packet DMA Channel-Specific Registers
	Common Registers

	User Application Registers
	Design Version Register
	Performance Monitor Registers
	User App0 Registers
	User App1 Registers

	Directory Structure

