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Abstract—Advances in digital detector technology leads
presently to rapidly increasing data rates in imaging experiments.
Using fast two-dimensional detectors in computed tomography,
the data acquisition can be much faster than the reconstruction
if no adequate measures are taken, especially when a high
photon flux at synchrotron sources is used. We have optimized
the reconstruction software employed at the micro-tomography
beamlines of our synchrotron facilities to use the computational
power of modern graphic cards. The main paradigm of our
approach is the full utilization of all system resources. We use
a pipelined architecture, where the GPUs are used as compute
coprocessors to reconstruct slices, while the CPUs are preparing
the next ones. Special attention is devoted to minimize data
transfers between the host and GPU memory and to execute
memory transfers in parallel with the computations. We were
able to reduce the reconstruction time by a factor 30 and process
a typical data set of 20 GB in 40 seconds. The time needed
for the first evaluation of the reconstructed sample is reduced
significantly and quasi real-time visualization is now possible.

Index Terms—Synchrotrons, Computed tomography, Image
reconstruction, Software, High performance computing, Parallel
programming, GPU computing, Performance evaluation.

I. INTRODUCTION

DRIVEN by substantial advances in digital detector tech-

nology, there is presently a rapid progress in X-ray

imaging technologies opening many applications in the fields

of medical diagnostics, homeland security, non-destructive

testing, materials research and others. X-ray imaging permits

spatially resolved visualization of 2D and 3D structures in

materials and organisms which is crucial for the understanding

of their properties. Furthermore, it allows one to recognize

defects in devices from the macro- down to the nano-scale.

Additional resolution in the time domain gives insight into

the dynamics of processes allowing one to understand the

functionality of organisms and to optimize devices and tech-

nological processes.

In recent years, synchrotron tomography has seen a sub-

stantial decrease of scan durations [1]. Based on the available

photon flux densities at modern synchrotron sources, ultra-fast

X-ray imaging enables the investigation of the dynamics of

technological and biological processes with a time scale down
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to the milliseconds range in 3D. Using modern CMOS-based

pixel cameras, it is possible to reach image rates of up to

several thousand frames per second. For example, frame rates

of 5000 images per second were achieved [2] using a filtered

white beam from the ESRF (European Synchrotron Radiation

Facility) ID19 wiggler source, a frame rate of 40000 images

per second were reported [3] using different experimental

conditions at ESRF beamline ID15a and a larger effective pixel

size. As a result of the improved image acquisition, a given

experiment can produce data sets of multiple gigabytes in a

few seconds. It is a major challenge to process the data in a

reasonable amount of time facilitating on-line reconstruction.

Several approaches are currently used to handle the huge

data sets produced at the synchrotron imaging beamlines.

• At the TopoTomo beamline of ANKA (the synchrotron

facility at the Karlsruhe Institute of Technology [4]) the

data has been stored in a local memory, transferred to

mass storage, and then processed and analyzed off-line.

The data quality and thus the success of the experiment

could only be judged with a substantial delay, which

made an immediate monitoring of the results impossible.

• At the ESRF, the experiments are usually monitored

by distributing the reconstruction of 3D volume onto

different hosts in a cluster via a queuing system. This

approach was adopted to maximize overall throughput

rather than minimizing reconstruction time for a single

scan.

• A pipelined data acquisition system combining a fast

detector system, high speed data networks, and massively

parallel computers is employed at the APS (Advanced

Photon Source at the Argonne National Laboratory) to

acquire and reconstruct a full tomogram in tens of min-

utes [1]. At the Paul Scherrer Institute in Switzerland, this

approach was further improved, reducing the reconstruc-

tion time down to just a few minutes [5]. However, the

supercomputer-based processing is expensive in terms of

money, power consumption, and administrative effort.

Our approach exploits the computational power of modern

graphic adapters which include hundreds of simple processors

to transform vertices in 3D space. These processors can be

used to speed up the reconstruction. The peak performance

of the fastest GPUs exceeds 1 TFlop/s for single precision

operations. High-end gaming desktops include up to four cards

and provide almost 5 TFlop/s of computational power. As

compared to 100 GFlop/s provided by commonly used servers,

this gives a potential speedup of a factor 50 [6], [7].



Since the release of the CUDA (Common Unified Device

Architecture [8]) toolkit, this computational power can be

used by developers to carry out general purpose computations.

CUDA extends the C language by a number of syntactical

constructs to enable data parallel computations on GPUs. The

architecture allows one to execute a sequence of mathematical

operations, so called kernels, simultaneously over a multi-

dimensional set of data. The API (Application Programming

Interface) includes functions transferring the data between the

system and GPU memory and executing the kernels to process

the data. For developers convenience NVIDIA has released

a number of libraries implementing standard algorithms. The

CUDA SDK includes cuFFT - an interface to perform multi-

dimensional FFT (Fast Fourier Transformations), cuBLAS - a

BLAS (Basic Linear Algebra Subprograms) implementation,

and cudpp - a collection of parallel reduction algorithms. There

are third-party implementations of LAPACK (Linear Algebra

PACKage) and a number of computer vision algorithms [9],

[10], [11].

In addition to vendor-dependent programming toolkits like

CUDA, the Khronos Group has introduced OpenCL (Open

Computing Language [12]), a new industry standard for par-

allel programming. The architecture of OpenCL is similar to

CUDA, but, unlike the proprietary NVIDIA technology, it

allows one to execute the developed applications on both AMD

and NVIDIA GPUs as well as on general-purpose CPUs.

To reconstruct 3D images of objects from multiple pro-

jections the FBP (Filtered Back Projection) algorithm is

frequently used [13], [14]. A fast implementation of this

algorithm is PyHST (High Speed Tomography in Python [15]),

which was developed at the ESRF. It is currently used at the

ESRF, ANKA, and BESSY synchrotron facilities. While it

uses heavily optimized C-code for performance critical parts

of the algorithm, the processing of a typical data set with Core

and Nehalem based Xeon servers still require about one hour

of computations. This time is made up from the I/O operations

dealing with image files and the computations of the FBP

reconstruction in approximately equal parts. In this work we

present a solution which reduces the computation time to the

minute scale and, hence, solves the computational part of the

problem. The options to transfer the image files in a faster

way are discussed as well.

In order to improve the performance and achieve a near

real-time reconstruction speed, we accelerated the original

version of PyHST by shifting most of the computations to

the GPU using the CUDA toolkit. The optimized version

is able to reconstruct a typical 3D image (a 3 gigavoxel

image reconstructed from 2000 projections) in only 40 seconds

using a GPU server equipped with 4 graphic cards, I/O time

excluded. It is approximately 30 times faster compared to the

8-core Xeon server used before.

There are a few other research projects aiming for GPU-

assisted tomographic reconstruction. A group at the University

of Antwerp has assembled a GPU server running 7 NVIDIA

GeForce GTX 295 cards with a total peak performance of

12 TFlop/s. The presented benchmark shows a 35 times

speedup compared with Intel Core i7-940 [16]. RapidCT is

another project developing GPU-assisted tomographic soft-

ware [17]. The presented results indicate an increase of

execution speed by a factor 20. Earlier implementations of the

filtered back projection were developed using the shader lan-

guage [18], [19]. Unfortunately, the projects do not distribute

the developed software and we are not able to compare the

achieved performance with our results directly.

The article is organized as follows. Section II describes the

FBP algorithm and provides an estimation of the computa-

tional complexity. Section III gives details about PyHST and

our optimizations. The performance evaluation and a review of

available hardware platforms are provided in Section IV. The

I/O bottleneck is discussed in Section V. Finally, the project

highlights are summarized.

II. TOMOGRAPHY AT SYNCHROTRON LIGHT SOURCES

Due to rather large source-to-sample distances, imaging

at synchrotron light sources is usually well described by a

parallel-beam geometry. The sample is placed onto a rotation

stage in front of a pixel detector and rotated in equiangu-

lar steps. The X-rays penetrate the sample and the pixel

detector registers a series of parallel 2D projections of the

sample volume. If the projection of the rotation axis onto

the detector plane is aligned perpendicular to the lines of the

pixel detector and the beam direction is also perpendicular

to the rotation axis, the 3D reconstruction problem can be

split up into a series of 2D reconstructions performed with

cross-sectional slices. The projection information needed for

the reconstruction of a given slice can always be extracted

from the same detector line of the image series. A coordinate

system is defined so that the center of rotation is located at

the center of the sample coordinate system and the sample

is rotating around the vertical axis. The principle of back

projection is used for the reconstruction of the slices. To

determine a function of the sample object at a given position

with coordinates (x, y) in the slice z, it is necessary to compute∑P

p=1
Ip(x · cos(pα) − y · sin(pα), z) over all projections,

where P is the number of projections, α is the angle between

projections, and Ip is the image of p-th projection. For a

given slice, this corresponds to smearing back the projection

values over the 2D cross section, and integrating over all

projection angles, see Fig. 1. Since the images are digitized,

a linear interpolation is performed to get the values of Ip at

the computation point [13], [20].

This approach, however, yields blurred results. As it can be

seen from Fig. 1, for a low number of projections the image

is affected by streaks along the back projection directions.

Moreover, the image reconstructed by simple (i.e. unfiltered)

back projection contains strong low-frequency components,

often visible as an envelope across the image. High-pass

filtering of the projection data prior to back projection is

used to compensate the blurring effect (e.g. by multiplica-

tion in the Fourier domain with a ramp filter [13] or other

filter types [21]). Fig. 2 illustrates the difference between

the reconstructed images using unfiltered and filtered back

projections. If filtering is not performed, the over-represented

low frequencies blur important details in the reconstructed

image [22].



Fig. 1. Image reconstruction using a simple back projection. The sample
is rotated and a pixel detector acquires a series of parallel projections under
different rotation angles (left). For image reconstruction, all projections are
smeared back onto the cross section along the direction of incidence yielding
an integrated image (right).

Fig. 2. Aluminum alloy foams are created by expanding foamable precursors
containing a gas-releasing blowing agent in a dense metallic matrix. The
figure visualizes an aluminum foam at an early expansion stage obtained by
synchrotron radiation based micro-tomography. No filtering was performed
for image a while a linear ramp filter was used to reconstruct image b.

A. Algorithm Complexity

The source data includes S slices consisting of P pro-

jections and N bins in each projection. The reconstructed

3D image must be composed of M voxels totally. Both the

source and the result are stored uncompressed in a single-

precision floating point format (32 bit). If linear interpolation

is used the total number of operations required to do the

back projection is equal to 9 · P · M [23]. In order to filter

a single projection, a convolution must be carried out for

each slice individually. The complexity of the slice filtering

is equal to the complexities of the direct and inverse FFT

transformations and the multiplication with the filter in a

Fourier domain. Assuming that the number of elements in the

transformed vector (N ) is equal to a power of 2, the exact

number of floating point operations required to compute FFT

is N ·(a·log
2
N+6), where a is between 4.03 and 5 depending

on the radix of the algorithm [24]. For sake of simplicity

N · (5 · log
2
N + 6) is used to estimate the computational

complexity of the FFT. Then, the total number of operations

required to filter a single slice is equal to N ·(10·log
2
N +13).

The following summarizes the estimation of the reconstruction

complexity:

• 4 · S · P · N bytes of data must be read from the disk

and 4 ·M bytes must be written back. If system memory

is not large enough to store the projection data and the

result, the computation has to be carried out in blocks.

In this case the data is accessed in a non-contiguous

way: only a few slices are read from each image file

per iteration. Such access is significantly slower than

sequential reading if present-day’s magnetic hard drives

are considered.

• If GPUs are used for processing, the source data must be

transferred from the system to the GPU memory and the

results must be transferred back to the system memory.

• The filtering step of the FBP algorithm needs S · P ·N ·

(10 · log
2
N +13) floating point operations to preprocess

the source data.

• The back projection step needs 9 · P · M floating point

operations to accomplish the reconstruction.

III. OPTIMIZATIONS

A. PyHST - High Speed Tomography in Python

PyHST is developed using two programming languages.

The Python application is responsible for various management

tasks and the C module is used to ensure good performance

of computational intense parts. The Python application loads

images, extracts slices for the current iteration, applies various

corrections to the source data, and, finally, executes the C-code

to reconstruct the image. The EDF (ESRF Data Format [25])

is the default image format of PyHST. Additionally, TIFF

(Tagged Image File Format) and other formats implemented by

the Python-Imaging, ImageMagick [26] and VIPS [27] libraries

are supported. The filters are implemented using a plugin

technique. The angles of the projections may be given either by

specifying the inclination of the first projection and the angle

between any two consecutive projections or by specifying

the angle for all projections separately. The position of the

rotational axis is specified in the reconstruction parameters

and can be corrected for each slice individually.

B. New Architecture

As a first optimization step, the original application has

been rewritten in a clean object-oriented way. The code was

made thread-safe and both static and global variables were

eliminated. The code was divided in several smaller objects:

a reconstruction code, an error handler, a thread scheduler, a

task manager, and a Python wrapper. The task manager is the

main component. It performs initialization tasks and instructs

the thread scheduler to start the processing of the slices. The

initialization tasks include allocation of all temporary memory,

configuration of the threading pool, and precomputation of

constants shared among slices.

To enable simultaneous usage of GPU and CPU, the recon-

struction code is implemented through an abstract interface.

This interface defines initialization, cleanup, and process rou-

tines which are executed by the task manager at appropriate

stages. The abstract reconstruction interface is implemented

for the GPU and CPU. The original CPU version was slightly

modified to implement the routines defined by the interface.

The newly developed GPU version uses the CUDA toolkit to



shift all computations to the GPU. The details of the GPU

implementation are described in section III-C.

The CPU code is optimized to use efficiently the available

CPU cache and its structure is organized in a way helping the

compilers with SIMD (Single Instruction Multiple Data) sup-

port to vectorize computations. The FFT transformations are

computed using the FFTW3 (Fastest Fourier Transformation in

the West) API. This API is implemented by several libraries

including the open-source FFTW and the highly optimized

commercial Intel MKL (Math Kernel Library) [28], [29].

The redesigned PyHST may run in CPU, GPU, and hybrid

modes. In the first two modes each thread in the pool is

associated with a single CPU or GPU, respectively. The

appropriate reconstruction module and consecutive number

of CPU/GPU core are stored in the thread context. In the

hybrid mode all computational resources of the system are

used. In order to support multiple CPU and GPU devices, a

simple thread scheduler is implemented. After all initialization

tasks are carried out the scheduler runs all threads in the

pool simultaneously. The threads request the next unprocessed

slice from the scheduler and run the reconstruction using

the associated module. The results are written directly to the

output image file and the processing continues afterwards with

the next slice. When all slices are processed, the threads are

paused and the task manager returns control to the Python

code which can load the next portion of slices from the files

or terminate the execution if all slices are already processed.

The only sequential points of execution are the request for

new slices and writing out the result.

Multithreading and logging are implemented using GLib

(Gnome Library [30]). The logging module of GLib is config-

ured to pass all messages to the Python-logging facility and,

hence, handle all log messages from both the Python and C

parts of the application in a uniform way. Finally, the Python

wrapper is used to encapsulate the calls to the task manager

into the Python/C interface.

To simplify compilation on various platforms, a CMake-

based build system is used to detect PyHST dependencies [31].

The CMake scripts check the availability and search for

the installation paths of Python, GLib library, FFTW3 and

Intel MKL engines, CUDA Toolkit, etc. The scripts from the

FindCUDA project are used to detect libraries and headers

of CUDA Toolkit and SDK [32]. Depending on availability

of the CUDA libraries, the CPU or GPU flavor of PyHST is

built. However, the CMake configuration tool allows one to

force building the CPU version even if all CUDA libraries

are present. Using the CMake it is as well possible to select

between FFTW3 and Intel MKL libraries, request a single-

threaded execution, and override the library paths.

C. GPU Implementation

Despite the availability of OpenCL, the current implemen-

tation is based on the CUDA architecture. The main reason is

the maturity of this technology and a rich stack of available

libraries. The OpenCL promises to become an industry stan-

dard for a variety of parallel architectures, independent of a

particular vendor. However, it lacks the library support at the

moment. NVIDIA does not provide an OpenCL version of

their FFT and BLAS libraries. Third party libraries are pretty

scarce or/and commercial. On the other hand, the OpenCL

and CUDA technologies are architecturally similar. In order

to translate GPU kernels from CUDA to OpenCL, only a few

keywords need to be changed. The support code which is

running on the CPU and scheduling GPU kernels needs only

slightly more work. Using CUDA libraries, we were able to

produce a first version of code in a very short time and, thanks

to the similarity of architectures, we will rapidly port it to

OpenCL when the technology becomes mature enough.

The preprocessed projection data is stored in 2D textures.

The pixels of the reconstructed slice are divided into sev-

eral groups at row boundaries. The groups are processed

sequentially in a loop. Each pixel of the group is associated

with a dedicated GPU thread and all pixels of the group are

reconstructed by the CUDA kernel in parallel. Within the

kernel a loop is executed over all projections. At each iteration,

a projection bin corresponding to the reconstructed pixel is

calculated and the texture fetching is performed. The texture

engine is configured to carry out a linear interpolation while

fetching the data. In this way both GPU multiprocessors and

texture engines are used at the same time. This acceleration

technique was first proposed in the beginning of the nineties

for the SGI RealityEngine [23].

In order to preprocess the source data, a convolution with

the configured filter is performed. The cuFFT library does not

include any optimization for performing FFT transformations

on data without imaginary part [33]. Another limitation of

the cuFFT library is a strong dependency of its performance

and accuracy on the size of the transformed vectors. In order

to handle these limitations, the projection data is padded to

the nearest power of two. To avoid the waste of complex

computations, an approach to compute two real convolutions

using a single complex one is utilized [34]. Two projections

are interleaved in the GPU memory, transformed into the

Fourier space using a single complex transform, multiplied

with the filter, and back-transformed. This operation results in

two filtered projections interleaved in the GPU memory. The

projections are then copied into the texture memory and are

later used in the back projection step of the algorithm. In order

to improve the FFT performance even further, the complex

projections are transformed in batched mode. However, not

all transforms are batched together, but divided into several

equally sized blocks. This enables one to exploit the notable

feature of the two latest generations of NVIDIA cards to

perform memory transfers between system and GPU memory

in parallel with execution of computational kernels. While

the current block is transferred, the previous one is processed

using the specified Fourier filter.

The same approach is used while transferring the recon-

structed image back to the system memory. The execution of

the back projection kernel on a group of pixels is interleaved

with memory transfers of already reconstructed pixels. In

general, this results in almost completely hiding the transfer

time within the computation time.



IV. PERFORMANCE EVALUATION

A. Hardware and Software Setup

Five systems available in our labs were compared as rep-

resentatives of different families of platforms. The systems

are not fully optimized but feature reasonable examples from

each family. The performance of the CPU implementation is

measured with a dual Xeon server.

System 1 Xeon Server (CPU)

Processor Dual Xeon E5472

Motherboard Supermicro X7DWE

Chipset Intel 5400 chipset

PCI Express PCIe 2.0, 36 lanes

Memory 24 GB DDR2-800 Memory

CPU 8 cores at 3 GHz

Price $5,500

A simple low cost desktop system with a single graphic

card represents our low-end GPU system.

System 2 Desktop (Single-Gpu)

Processor Intel Core Duo E6300

Motherboard Fujitsu-Siemens D3217-A

Chipset Intel Q965 chipset

PCI Express PCIe 1.1, 16 lanes, 1 GPU slot

Memory 4 GB DDR2-666 Memory

CPU 2 cores at 1.86 GHz

GPU NVIDIA GTX 280

Price $1,000

An advanced desktop solution of the latest generation is

equipped with the Asus Rampage III Extreme motherboard

which supports USB 3, the latest SATA 6 Gb/s interface, and

up to four graphic cards which are connected using PCIe x8

if all four are installed and using PCIe x16 if only two cards

are used. The system is currently equipped with two NVIDIA

GeForce GTX295 adapters.

System 3 Advanced Desktop (Multi-GPU)

Processor Intel Core i7 920

Motherboard Asus Rampage III Extreme

Chipset Intel X58 chipset

PCI Express PCIe 2.0, 36 lanes, 4 GPU slots

Memory 6 GB DDR3-1333 Memory

CPU 4 cores at 2.66 GHz

GPU 2 x NVIDIA GTX295

Price $1,800

A Tesla system from NVIDIA connected to a Xeon-based

frontend server is used to evaluate performance of the profes-

sional series of GPU cards.

System 4 NVIDIA Tesla S1070 Server

Processor Dual Intel Xeon E5472

Motherboard Supermicro X7DWE

Chipset Intel 5400 chipset

PCI Express PCIe 2.0, 36 lanes

Memory 24 GB DDR2-800 Memory

CPU 8 cores at 3 GHz

GPU 4 x NVIDIA Tesla C1060

Price $12,000

The high-end platform is a GPU server from Supermicro

with 96 GB memory, SSD disks, and four GPU cards installed.

The Supermicro motherboard is equipped with a dual Intel

chipset with total number of 72 PCIe 2.0 lanes. Therefore, all

four GPU adapters are running using a full x16 bandwidth.

System 5 Supermicro 7046GT GPU Server

Processor Dual Intel Xeon E5540

Motherboard Supermicro X8DTG-QF

Chipset Dual Intel 5520 chipset

PCI Express PCIe 2.0, 72 lanes, 4 GPU slots

Memory 96 GB DDR3-1066 Memory

CPU 8 cores at 2.53 GHz

GPU 2 x GTX480 + 2 x GTX295

Price $8,000

All systems are running the 64 bit version of OpenSuSE

11.2 with the following software configuration:

• Linux Kernel 2.6.31.5

• GNU C Library 2.10.1

• GNU C Compiler 4.4

• Intel C Compiler 11.0.081

• Intel Math Kernel Library 10.2.1.017

• FFTW 3.3.2 (single-threaded SSE version)

• Gnome Library 2.22.1

• Python 2.6.2

B. Sample Data Set

In all tests reported below, 2000 projections were used

to reconstruct a 3D image of a plastic holder with porous

polyethylene grains. The image dimensions are 1691 ∗ 1331 ∗
1311 voxels and the projections have a size of 1776 ∗ 1707
pixels. According to section II-A, 600 ∗ 109 floating point

operations are needed to filter the projection data and 53∗1012

operations are necessary for the back projection. The amount

of source data is about 24 GB and the resulting image has a

size of 11 GB.

Fig. 3. The 2000 projections (left) were used to reconstruct a 3 gigavoxel
image of porous polyethylene grains (right). The computation complexity of
the reconstruction is about 54 TFlop. A total of 35 GB of data must be read
and stored.

C. Compiler and FFT Library

The performance of an application is often dependent on the

compiler and optimization flags used [35]. As a consequence,



to compare with the fastest possible CPU configuration, an

optimal selection of C compiler and FFT library must be

performed first. As it was described in earlier sections, the

reconstruction process consists of filtering and back projection.

The performance of the filtering step depends mainly on the

speed of the FFT library. No external libraries are used in

the back projection and the performance depends only on

the compiler. The performance of popular compilers and FFT

libraries available for the Linux platform is shown in Fig. 4.

According to our results, the open-source gcc-4.4 produces

the best code for back projection, being slightly faster than

the commercial Intel C Compiler. On the other hand Intel

Math Kernel Library is significantly faster compared to the

open-source alternatives. Therefore, in the following tests the

Intel Math Kernel Library is used to perform filtering and all

sources are compiled with gcc-4.4 using -O3 -march=nocona

-mfpmath=sse optimization flags.

Fig. 4. Performance evaluation of C compilers (left) and FFT libraries
(right). The test was run on a Desktop system and a single CPU version of
PyHST was deployed. Only the performance of the back projection step was
measured in the compiler benchmark and only the performance of the filtering
step - in the FFT benchmark. For all compilers the SSE vectorization was
switched on. With gcc and clang the following optimization flags were used:
-O3 -march=nocona -mfpmath=sse. With the Intel C Compiler the employed
optimization flags were: -O3 -xS. The FFTW3 library was compiled with SSE
support. The performance is measured in GFlop/s and larger values correspond
to better results.

D. Reconstruction Performance

The performance of the five test systems is given in Fig. 5. If

the GPU is used for image reconstruction even a cheap desktop

is approximately 4 times faster than an expensive Xeon server.

It takes only 40 seconds to reconstruct a 3 gigavoxel image

from 2000 projections using the GPU server equipped with

four graphic cards. At a price comparable with the Xeon

server, the GPU server performs reconstruction 30 times faster.

Fig. 5. Evaluation of the time needed to reconstruct the sample data set using
different hardware platforms. The CPU-based reconstruction was performed
on the Xeon server and only GPUs were used for all other platforms. Shorter
times correspond to better results.

Our implementation scales well. According to Fig. 6, only

2.6% of the maximum possible performance is lost while

the Tesla system is scaled up from one to four GPUs. The

efficiency of the platforms in terms of MFlop/s per dollar

ratio is shown in Fig. 7. It is easy to see that the desktop

products are superior to the server based solutions using

this metric. Furthermore, owing to the good scalability of

algorithm implementation, the Advanced Desktop may be

further enhanced by adding two more graphic cards.

Fig. 6. Scalability evaluation of the GPU-based reconstruction. The test
was executed on an NVIDIA Tesla S1070 system with 1 to 4 Tesla C1060
GPUs. The performance of the complete reconstruction process including the
data transfer between host and GPU memory is measured. The dashed line
indicates maximum possible performance (as if Flop rates of all GPUs would
be just summed up). The evaluation shows that our implementation scales
linearly with only 2.6% of performance loss in the case if all 4 GPUs are
enabled.

Fig. 7. MFlop/s per dollar efficiency of the tested hardware platforms
for reconstruction using the back projection algorithm (filtering is omitted).
Higher values correspond to better results. The actual performance in GFlop/s

and the platform prices are shown in the chart.

E. Evaluation of NVIDIA Hardware

NVIDIA delivers multiple generations of graphic cards

in consumer and professional versions. In this section the

performance of the high-end graphic cards from the two

latest generations is assessed. GeForce GTX295 includes two

GT200 processors. GeForce GTX280 is its single processor

counterpart. NVIDIA Tesla C1060 is a professional solution

using the GT200 architecture. It has more memory than con-

sumer products but at reduced clock rates. GeForce GTX480



is the current NVIDIA flagship product based on the latest

GF100 (Fermi) architecture. All cards besides GTX295 have

only a single processor. The following table summarizes the

characteristics of the tested cards.

TABLE I
CHARACTERISTICS OF THE TESTED GRAPHICS ADAPTERS

GPU GTX 480 GTX 295 GTX 280 C1060
Architecture GF100 GT200 GT200 GT200
Processors 1 2 1 1
Parallel Threads 480 2 x 240 240 240
Clock Rate 1.4GHz 1.25GHz 1.3GHz 1.3GHz
Memory 1.5GB 2 x 0.9GB 1GB 4GB
Bandwidth 177GB/s 2 x 112GB/s 142GB/s 102GB/s
Texture Fill Rate 42GT/s 2 x 46GT/s 48GT/s 48GT/s
Power Consump. 250W 289W 236W 188W
Price $500 $500 $250 $1200

As described above, the reconstruction process splits into

three stages: data transfer, filtering using cuFFT, and back

projection. In Fig. 8 the performance of the GPU cards for

all these stages is investigated individually. In all tests the

highest performance is provided by the dual-GPU GTX295.

GTX480, a single-GPU card of the latest generation, is almost

reaching the performance of GTX295 for the filtering step. The

transfer bandwidth of GTX480 is also quite good compared

to the single GPU cards of the older generation. However, as

can be seen from TABLE I, the texture engine has not been

significantly improved. As a consequence, the performance

of the texture engine becomes the bottleneck for the back

projection stage. The GTX480 is only slightly faster than

the GTX280 and it is almost two times slower compared

to the GTX295. The back projection step consumes 80% of

the total reconstruction time and, as a result, for tomographic

reconstructions the GF100 architecture is only slightly better

than the older and cheaper GT200. Taking into account that the

prices of GTX295 and GTX480 are approximately the same,

it is significantly more efficient to use GTX295 cards. The

professional series of Tesla cards have more memory on board

but do not provide any performance benefits for tomographic

reconstruction. The significantly cheaper consumer products

are performing even a little better due to slightly faster clock

rates.
Comparing the measured performance of GPU adapters to

the peak values published by NVIDIA, a significant differ-

ence can be noted. Performing back projections the GTX295

achieves only 483 GFlop/s, which is about 25% of the

theoretical peak performance (1788 GFlop/s). The filtering

performance is even slower reaching only 70 GFlop/s, which

constitutes 4% of the peak value. For comparison, actual and

peak values are much closer in the CPU case. The Intel Xeon

E5472 exhibit a theoretical performance of 48 GFlop/s. For

the back projection the actual performance is 25 GFlop/s,

half of the nominal value. In the filtering code 9 GFlop/s,

or 20% of the peak performance is reached. The utilization

figures give an insight into the suitability of the algorithm

for GPU architecture and code quality at the same time. The

large difference between theoretical and real numbers is due

to the extreme specialization of the graphic hardware. The

optimal performance is only reached if a large amount of

Fig. 8. The performance evaluation of NVIDIA hardware applied to
tomographic reconstruction. The performance at all stages of reconstruction is
measured independently. A pie-chart on the right shows the ratio between the
times required for the stages. In order to measure precisely the impact of the
stages, the data transfers and computations are not parallelized, but performed
sequentially in this test. The overall performance is measured in megapixels
per second and in all tests larger values correspond to better results.

simple mathematical operations is executed simultaneously.

Integer and double-precision arithmetic is significantly slower

than single-precision. Access to global memory is time con-

suming and very strict access patterns must be followed for

optimal performance. For some tasks the speed varies by more

than a factor of 30 depending only on the memory access

strategy [36]. In the case of the back projection, the Flop rate is

bound by memory throughput as well. The performance of the

texture engine is another limiting factor. However, even if the

theoretical numbers are not reached, GPUs are still excellent

number crunchers.

V. I/O PERFORMANCE

Reconstruction is only one part of the task. The other

part is data handling: the projections must be loaded into

the system memory and the resulting 3D image must be

stored. Besides, reading of projection data involves a sizable

amount of random accesses which are considerably slow using

commonly used magnetic hard drives. The I/O performance

can be slightly improved if SSDs (Solid State Disk) are used

as storage media. In contrast to magnetic hard drives, SSDs are

based on microchips and do not include moving mechanical

parts. This reduces random-access latencies significantly. The

left part in Fig. 9 compares performance of traditional hard

drives with the storage systems based on the SSD. A single

SSD disk outperforms its magnetic counterpart by roughly 4

times. The performance can be increased few times more by

combining several SSD drives in a RAID (Redundant Arrays

of Inexpensive Disks).

The right part of the figure shows the ratio between the

time spent in the computations and I/O operations whilst

reconstructing the data on the GPU server. Using two Intel



X25-E SSD disks organized in a striping RAID-0, it was

possible to significantly reduce the total time required for

the data handling. Still, the I/O tasks take 4 times more

time than reconstruction and remain the major performance

bottleneck. To further reduce the I/O performance penalty,

we are currently working on an implementation of a direct

readout from the frame grabber. The GPU server is equipped

with 96 GB of memory and is able to store both the source

data and the resulting image directly in the system memory.

On the long term, strategies to reduce the data stream such as

data compression and frame reject are needed to further boost

performance.

Fig. 9. Reconstruction of tomographic images requires reading and writing
of large amounts of image data. The joint read/write throughput for different
storage systems is depicted in the left chart. A WDC5000AACS SATA hard
drive is compared with an Intel X25-E SSD disk, two such SSD disks
organized in a striping RAID-0, and a virtual RAM disk. The Ext4 file system
is used in all cases. The right chart indicates the ratio of the time spent
in computations and I/O respectively. The results were obtained using the
GPU server with a storage system consisting of two Intel X25-E SSD drives
assembled in RAID-0.

VI. CONCLUSION

Modern graphic cards provide over 1 TFlop/s of com-

putational power and can be efficiently used to speed up

scientific computations by more than one order of magnitude.

The filtered back projection algorithm used for tomographic

reconstruction can be implemented efficiently and with good

scalability on the GPU architecture. Based on the source code

of PyHST we have developed a GPU-based implementation of

the algorithm which is able to exploit the computational re-

sources of multiple GPU and CPU devices simultaneously. The

performance evaluation confirms that a real-time assessment

is possible with the current GPU architecture. Using a GPU

server equipped with 4 graphic cards it takes only 40 seconds

to reconstruct a 3 gigavoxel image from 2000 projections.

This is approximately 30 times faster compared to the time

needed to reconstruct the same image using an 8-core Xeon

server which has the same price as the GPU server. Even a

$1000 desktop equipped with a single GPU card outperforms

the Xeon server by a factor of four.

We reduced the reconstruction time significantly. However,

we are facing the challenge of rapidly loading multiple giga-

bytes of source data into the system memory. Using the fastest

SSD disks assembled as RAID-0 we were able to perform

all disk operations in approximately 2 minutes. However, this

time is still inadequate compared to the computation time and

currently we are working to read images directly into the

system memory, bypassing the hard drive.

To build an optimal hardware setup, we have compared

high-end NVIDIA cards from the current and last generations

available on the market. Our evaluation has shown that the

features provided by the professional Tesla series and the

newly presented Fermi architecture do not improve the tomo-

graphic reconstruction significantly. Equipped with two GT200

processors, the GeForce GTX295 is the fastest adapter among

the NVIDIA products. For better performance it is possible to

stack up to 4 of such cards in a single system. Supermicro

supplies the 7046GT family of GPU servers, which include

up to 4 GPU cards at full x16 speed, have two PCIe x4

extension slots for the frame grabber and a RAID adapter,

and support up to 192 GB DDR3 memory to hold both the

source projections and the resulting 3D image completely

in the system memory. The cheaper alternative is a desktop

system based on an Asus Rampage III Extreme motherboard.

If equipped with two GTX295 cards this system reaches

1 TFlop/s performance with a price below $2000. With a

maximum of 48 GB memory supported, it is still possible

to carry out most of the reconstructions directly in memory.

The new SATA 3 (6 Gb/s) controller helps to reduce I/O time

when used together with a RAID of SSD drives.

For the future, we also plan to extend this pipelined architec-

ture from 2D slice-by-slice reconstruction to 3D volume recon-

struction, as needed e.g. for synchrotron laminography [37].
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