
www.kit.eduKIT – University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association

A High Performance Platform for
Real-Time X-ray Imaging

Agenda
Synchrotron Tomography at KIT
Hardware & Software Platform
Optimizing Tomography Speed

Suren A. Chilingaryan, KIT
Michele Caselle, KIT
Thomas van de Kamp, KIT
Andreas Kopmann, KIT

Authors

Alessandro Mirone, ESRF
Uros Stevanovic, KIT
Tomy dos Santos Rolo, KIT
Matthias Vogelgesang, KIT

Example for 3D X-Ray imaging.
The functional groups of a flightless

weevil are colored

In collaboration with ESRF:
European Synchrotron

Radiation Facility

Architectures
NVIDIA GT200
NVIDIA Fermi
NVIDIA Kepler

AMD VLIW5
AMD GCN

S. Chilingaryan et. all2 Institute for Data Processing and Electronics
Karlsruhe Institute of Technology

ANKA Synchrotron at KIT

ANKA synchrotron (left) and schematics of
TOPO-TOMO beamline (right).

The rotating sample in front of a pixel detector is
penetrated by X-rays produced in the synchrotron.
Absorption at different angles is registered by camera
and 3D map of sample denisity is reconstructed.

Sample

Storage Ring

Bending
Magnet

DMM Monochromator

Attenuator

Slits

Be-
window

Slits

Experiment

Sample

XRY
Film

Detector
CCD

S. Chilingaryan et. all3 Institute for Data Processing and Electronics
Karlsruhe Institute of Technology

Heads of a newt larva showing bone formation and
muscle insertions (top) and a stick insect (bottom),
acquisition time 2s.

Examples

4D tomogram of wheat weevil

S. Chilingaryan et. all4 Institute for Data Processing and Electronics
Karlsruhe Institute of Technology

UFO Project

Goals

➢Increase sample throughput
➢High speed tomography
➢Tomography of temporal processes
➢Allow interactive quality assessment
➢Enable data driven control

➢Auto-tunning optical system
➢Tracking dynamic processes
➢Finding area of interest

Ultra Fast X-ray Imaging of Scientific Processes with On-Line
Assessment and Data-Driven Process Control

S. Chilingaryan et. all5 Institute for Data Processing and Electronics
Karlsruhe Institute of Technology

Online Monitoring Configuration

LSDF
Large Scale Data Facility

0 100 200 300 400 500 600

Internal External
GT/s

External GPU Box SAS Attached Storage

CameraLink

850MB/s

External PCIe x16 (8 GB/s)

Ethernet (10 Gb/s)PCO.edge
PCO.dimax
PCO.4000

SuperMicro 7046GT-TRF (Dual Intel 5520 Chipset)
CPU: 2 x Xeon X5650 (total 12 cores at 2.66 Ghz)
GPUs: 4 x GTX590 External
Memory: 96 GB / 12 DDR3 slots (192GB max)
Network: Intel 82598EB (10 Gb/s)
Camera Link Frame Grabber (850 MB/s)
Storage: Areca ARC-1880-ix-12 SAS Raid
 16 x Hitachi A7K200 (Raid6)
 8 x Intel SSD 510 (Raid0)

0 500 1000 1500 2000

1 Box 2 Boxes
sequential write, MB/s

0 500 1000 1500 2000 2500 3000

Read Write
SSD Performance, MB/s

SFF8088 (2.4 GB/s)

Camera Storage

S. Chilingaryan et. all6 Institute for Data Processing and Electronics
Karlsruhe Institute of Technology

Next Generation: High-speed Programmable Camera

Vacuum or N2

Optical body
and lens

CMOS pixel sensor

Daughter card

“made in house”
Readout mother card

FPGA Virtex 6

Flex electrical cable
(max f = 183MHz)

Heat exchangerPeltier cells

Link

High speed CMOS sensor

1Mpix, 5000 fps, 10 bits

Self-trigger & Data compression

On-line elaborations and control

Full Programmability

Direct connection to Infiniband-cluster

First Camera Prototype

S. Chilingaryan et. all7 Institute for Data Processing and Electronics
Karlsruhe Institute of Technology

Next Generation: Processing Cluster

Image
sensor

Cache

up to
10GB/s

4GB/s <2 GB/s 0,25 GB/s

Camera
Programmable

Transfer
rates

Camera Frontend
Task Scheduler

(CUDA + GPUDirect)

Distributed
Storage

OpenCL
Node

OpenCL
Node

LS
D

F
La

r g
e

 S
c a

l e
 D

a
t a

 F
a

c ility

FPGA

Real-time control loop

Outer control loop

Storage
Node

Storage
Node

Infiniband
(Optical)

IB router

S. Chilingaryan et. all8 Institute for Data Processing and Electronics
Karlsruhe Institute of Technology

UFO Framework

acquisition
flat field

correction

.

noise
reduction

Preprocessing
Executed on CPUs

sinogram
generation FFT

.

filter

Reconstruction
Executed on GPUs

iFFT back
projection

Storage

.

Segmentation /
meshing

storage of raw data G = Ufo.Graph()

cp = g.get_filter('copy')
raw_wr = g.get_filter('writer')
rd = g.get_filter('uca-reader')
fbp = g.get_filter('fbp)
wr = g.get_filter('writer')

angle = numpy.pi / num_projections
fbp.set_properties(axis=axis, angle_step=angle)
raw_wr.set_properties(path=raw_path, prefix='raw')
wr.set_properties(path=output_path, prefix='slice')

rd.connect_to(cp)
cp.connect_by_name(“output1”, fbp, “input”)
cp.connect_by_name(“output2”, raw_wr, “input”)
fbp.connect_to(wr)

g.run()

OpenSource
http://ufo.kit.edu/framework

Features
➢Easy Algorithm Exchange
➢Camera Abstraction
➢Pipelined Processing
➢Glib/GObject, scripting language
support with introspection
➢OpenCL + automated
management of OpenCL buffers

S. Chilingaryan et. all9 Institute for Data Processing and Electronics
Karlsruhe Institute of Technology

θ=180

θ=0

Synchrotron Tomography

The sample is evenly rotated and the pixel detector registers series of
parallel 2D projections of the sample density at different angles.

S. Chilingaryan et. all10 Institute for Data Processing and Electronics
Karlsruhe Institute of Technology

Tomographic Reconstruction

n = 1 n = 2 n = 3 n = 10 n = 50 n = 1000

Filtered back-projection is used to
produce 3D images from a manifold

of two dimensional projections. Vertical slices are
processed independently. For each slice all projections

are smeared back onto the cross section along the
direction of incidence yielding an integrated image.

S. Chilingaryan et. all11 Institute for Data Processing and Electronics
Karlsruhe Institute of Technology

Processing Chain: pipelined Architectures

Moderate size
data-sets are
stored in memory

Huge data-sets
are cached on
SSD Raid

P
reprocessing

R
econstruction

UFO
Framework

Real-time
storage

1

2 3

4

1. Reading data from fast SSD Raid-0 (random reads are effective)
2. Scheduling and preprocessing using SIMD instructions of x86 CPUs
3. Reconstructing on GPUs
4. Storing to Raid on magnetic disks (sequential writes are effective)

4 stage pipeline
I/O + Computations

0 100 200 300 400 500 600
HDD Raid SSD Raid MB/s

S. Chilingaryan et. all12 Institute for Data Processing and Electronics
Karlsruhe Institute of Technology

Performance of Tomographic Reconstruction

small (4GB) standard (11GB) Big (120 GB) Huge (300 GB)
0

200

400

600

800

1000

1200

Memory SSD

M
B

/s

CPU GPU
1

10

100

1000

10000

17.93

1016.26

M
B

/s

11 GB standard data set

Scaling with dataset size CPU vs. GPU

S. Chilingaryan et. all13 Institute for Data Processing and Electronics
Karlsruhe Institute of Technology

Basic Implementation

Image Loader

Pool of Sinograms
 (host memory)

Pool of CPU and GPU
processing threads

Pool of Vertical Slices
(host memory)

Texture

Data Storage

W

H

GPU
thread

1st Stage 2nd Stage

Double
buffering

Double
buffering

Filtering

P
C

Ie D
at a

T
ran sfer

P
C

Ie D
at a

T
ra nsf er

Fetch slices
for processing Store results

Ratio of operations

90%

Back Projection
Filtering
PCIe Transfer

50 51 52 53 54 55

Transfer Compute
Overlapped

ms, per slice

Overlapping Efficiency

S. Chilingaryan et. all14 Institute for Data Processing and Electronics
Karlsruhe Institute of Technology

Extension Box

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

Internal External Number of GPUs

S
p

e
e

d
-u

p

7 7.2 7.4 7.6 7.8
Internal External 8 GPUs, Speed-up

External GPU Enclosure
by One Stop Systems

Scalability NUMA Effects

NUMA

Non-NUMA

0 1 2 3 4 5 6 7 8 9

1 slice, transfer time, ms

NUMA

Compute

Non-NUMA

0 10 20 30 40 50 60 70

8

7

6

5

4

3

2

1

Computems, per 8 slices

With external box configuration

0 1 2 3 4 5 6 7 8
NUMA Non-NUMA 8 GPUs, Speed-up

1 2 3 4 5 6 7 8
5

10

15

20

25

tim
e

 (
se

co
n

d
s)

Initialization

1 x PCIe x16 2.0
4 x GTX590
8 GPU cores

S. Chilingaryan et. all15 Institute for Data Processing and Electronics
Karlsruhe Institute of Technology

Back Projection Explained

1 2 3 4 5proj. α

1. For each position we compute: x●cos(α) - y●sin(α)
2. Compute linear interpolation between 2 neighboring bins
3. Sum over all projection
4. The sum is the value of (x,y)

(x,y)
x●cos(α) - y●sin(α)

….

1 2 3 4 5proj. 0 ….
1 2 3 4 5proj. 1 ….
1 2 3 4 5proj. 2 ….

….

bins

For each texel of output volume
and for each projection we perform
a single linear interpolation

S. Chilingaryan et. all16 Institute for Data Processing and Electronics
Karlsruhe Institute of Technology

Fermi: Balancing texture fetches with computations

GT280 GTX580 Speedup

240 x 1.3
GHz

512 x 1.55
GHz 2.5 x

48 GT/s 49.4 GT/s 1.0 x

Texture Engine

Computational Units

Texture

Image

N
2
●P texture fetches

Standard Version
Texture engine is heavily loaded

Texture

Shared
Memory

(3/2)*N●P texture
fetches

Image

N
2
 interpolations

Fermi-optimized Version
Both texture & computations engines are used

Thread
block

v = x●cos(α) - y●sin(α)
max

x,y<N
(v) – min

x,y<N
(v) < N√2

N√2 < 1.5 N

16 px

16 px

Each block of threads accesses actually
only 3 ● N / 2 bins per projection

S. Chilingaryan et. all17 Institute for Data Processing and Electronics
Karlsruhe Institute of Technology

Pixel to thread mapping
bins

projections

24 bins

16 proj.

Processed by a single thread
block (16x16)
48 bins of a projection required for
current block

Texture
Memory

48 bins

16 proj

...
Step1: filling shared memory
Only 48 texture fetches per projection

32 px

32 px

Step2: integrating the volume 322
interpolations per projection thr (1,1)

thr (1,2)

thr (1,3)

thr (2,1)

thr (2,2)

thr (2,3)

thr (3,1)

thr (3,2)

thr (3,3)

Shared
Memory

Volume

16 of the projections processed in a
single pass

Legend

Processing in multiple passes,
16 projections each

16

16

Processing 4 pixels per thread reducing amount of texture
fetches and hides operation latencies with multiple
independent operations (see Better Performance at Lower
Occupancy presented by V. Volkov at GTC2010)

Px. Fetches/px. Regs ShMem Occup. Ind. Instr

1 0.09375 26 1536 66% 1

4 0.046875 32 3072 66% 4

S. Chilingaryan et. all18 Institute for Data Processing and Electronics
Karlsruhe Institute of Technology

Optimizing shared memory reads

2 3 4 5 6 7 8 9 101112131415161

Block of 16x16 threads

Wrap 1, first half-wrap

2 3 4 5 6 7 8 9 101112131415161

2 3 4
5 6 7 8
9 101112
13141516

1 2 3 4
5 6 7 8
9 101112
13141516

1 2 3 4
5 6 7 8
9 101112

13141516

1

2 3 4 5 6 7 8 9 101112131415161
2 3 4 5 6 7 8 9 101112131415161

Wrap 1, second half-wrap
Wrap 2, first half-wrap

Block of 16x16 threads

We have better shared
memory performance

using this layout

Up to 16 shared
Memory positions
per half-wrap

Less than 6 shared memory
Positions per half wrap

Wrap 1, first half-wrap

S. Chilingaryan et. all19 Institute for Data Processing and Electronics
Karlsruhe Institute of Technology

Reducing computation costs with oversampling

Bin 0

0 0.25 0.5 0.75 1

196 bins

Shared
Memory

Bin 1

1.25 1.5 1.75 2

Method Fetches/px. Regs ShMem Occup. Reads. Flops.

Linear 0.046875 32 3072 66% 2 7

Oversample 0.1875 42 12288 50% 1 4

Linear interpolation is slow,
and nearest neighbor is not

precise enough

Bin 2

2.25 2.5 2.75 3
...

12 texture fetches per thread

With oversampling the texture engine is
used to interpolate 4 positions for each
projection bin and near-neighbor
interpolation is used then.

GTX280

GTX580

0 20 40 60 80 100 120

Texture Linear Oversample
giga-interpolations per second

S. Chilingaryan et. all20 Institute for Data Processing and Electronics
Karlsruhe Institute of Technology

Kepler: Fast Texture Engine is Back

GT580 GTX680 Increase

Texture
Engine

49.4 GT/s 128.8 GT/s
2.6 x

Computational
Units

16 x 32 x
1.55 GHz

8 x 192 x
1.006 GHz 1.94 x

Int multipl., bit
ops., type conv

16 x 16 x
1.55 GHz

8 x 32 x
1.006 GHz 0.65 x

Shared
Memory

48 KB 48 KB 1

Blocks per SM 8 16 2

Registers 32K per SM,
63 per thr.

64K per SM,
63 per thr.

binsprojections 16 bins

Texture
Memory

2 3 4 5 6 7 8 9 10 11 12 13 14 15 161

2 3 4 5 6 7 8 9 10 11 12 13 14 15 161

2 3 4 5 6 7 8 9 10 11 12 13 14 15 161

16 bins

Texture Cache Hit Rate 89 %

Texture Throughput 79.3 GT/s

Theoretical Throughput 128.8 GT/s

Simple Texture Method

1. Up to 16 bins are accessed per half-wrap,
2. All threads are accessing a single texture row

Block of 16x16 threads

S. Chilingaryan et. all21 Institute for Data Processing and Electronics
Karlsruhe Institute of Technology

Optimizing cache efficiency

4
5 6 7 8
9 10 1112
1314 15 16

1

16 threads

Iteration
2

Iteration
3

Iteration
5

2 3

16 pixels in 4 iterations

16 pixels, in 4 iterations

Layout Regs Occup. Hit Rate Bandwidth

Standard 32 100% 89 79.3 GT/s

New 40 75% 96 117.5 GT/s

binsprojections

 6 bins

Texture
Memory

 6 bins

16 proj.

1.Only 6 bins are accessed per half-wrap
2 16 projections are processed in parallel by all blocks at each
iterations which is fitting typical 2D texture access pattern
3. 16 sums are summed together in the end using new shuffle
instructions

4
5 6 7 8
9 10 1112
131415 16

1

16 threads

Iteration
2

Iteration
3

2 3 16 pixels,
4 iterations

S. Chilingaryan et. all22 Institute for Data Processing and Electronics
Karlsruhe Institute of Technology

Faster rounding

GTX580

GTX680

0 20 40 60 80 100 120 140 160

Simple Oversamp. (Fermi) Linear Oversample
giga-interpolations per second

s e e e e e e e e f f f f f f f f f

Exponent, 8 bits Fraction, 23 bits

031

….f =

IEEE 754
single-precision
floating point number

f = -1s• 2e-127•(1 + ∑b
i
•2i-23)

Only 23 significant positions, for small
positive numbers:
 F + 223 = 223•(1 + ∑b

i
•2i-23)

i.e. no fractional part

round(f) = f + 223 - 223
(int)f = f + 223 – 0x4B000000

Kepler Oversampling Algorithm
1. New stage pre-computing per-block offsets
2. Offsets are exchanged using shuffle instruction
3. Faster rounding is not used due overlap of
rounding and floating point operations

S. Chilingaryan et. all23 Institute for Data Processing and Electronics
Karlsruhe Institute of Technology

Linear

Oversample

0 20 40 60 80 100 120 140 160 180

HD5970 GTX580 GTX680 HD7970

giga-interpolations per second

AMD Architectures

Radeon HD 5970 Radeon HD 7970

VLIW5 GCN

Only a single chip running in dual chip configurations
Memory/Computations overlapping in beta and have not worked in my setup
Many functions are not optimal, for instance CopyRect family functions are slow
Compiler Doesn't support local arrays, manual unrolling is required

Requires quintuples of independent
operations in command flow:

Block size: 16x16 => 8x8
Points per thread: 2 => 8

No special tunning required

2 ppt

8 ppt

0 10 20 30 40 50 60 70 80 90
giga-interpolations per second

S. Chilingaryan et. all24 Institute for Data Processing and Electronics
Karlsruhe Institute of Technology

Back Projection Kernels

GT200
Uses texture
engine

Fermi/GCN
Caches textures in
shared memory and
performs interpolations
using computation nodes

Kepler
Uses texture engine,
but processes 16
projections at once and
16 points per thread to
enhance cache hit rate

Fermi/GCN Fast
Oversampling uses
texture engine to
interpolate values at 4
predefined points and
then uses near-neighbor
interpolation to avoid
costly computations

Cypress
Computes 16 points per
thread in order to provide
sufficient flow of
independent instructions
to VLIW engine

Kepler Fast
Rounding optimization to
get over performance
limits of Kepler and
usage of new shuffle
instructions to exchange
data between threads in
wrap

Cypress Fast
Oversampling
algorithm with 16
points per thread.

S. Chilingaryan et. all25 Institute for Data Processing and Electronics
Karlsruhe Institute of Technology

Summary
• GPU computing fits extremely well the needs of Synchrotron Imaging
• However, special care required to get to really high speeds

– Pipelined architecture is efficient way to hide I/O time
– The architecture-specific optimizations are often required

• We develop a platform for high speed time resoluted X-ray Imaging with possibility of
real-time control

• Open-source image processing framework is designed
– GPU/CPU processing with OpenCL
– Integration with scripting languages using Gobject-introspection
– Available from http://ufo.kit.edu/framework

• A programmable camera is currently under design to enable real-time control
– Up to 1 Mpix at 5000 frames per second
– Direct connection to Infiniband cluster
– Programmable integrated logic for real-time control

• A chain of filters for parallel-beam tomography has been developed
– Throughputs of up to 500 MB/s can be handled with a single PC
– A clustered solution is under development

•

	Parallel Architectures
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Folie 21
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

