Flexible Data-Flow Processing

Christian Brugger

www.kit.edu

01.09.2011

Outline

- Introduction
- System Vision
- Related Work
- Methodology
- Requirements
- Architecture
- Current State

Introduction

- Projects:
 - UFO visible light
 - MEDIPIX x-ray
 - USCT ultra sound
- High bandwidth:
 - Streaming:
 - 1 GB/s .. 100 GB/s
 - Preprocessing
 - Analysis

Motivation

- UFO
 - Short setup time & one shot experiments "Beam-time is expensive"
- Goal: "Quick & easy" framework for stream processing (> 1 GB/s)
 - Focus on algorithm (not HDL-design)
 - Reusable across projects
 - Customizable / Extensible
 - "Easy things simple, difficult things possible"

System Vision

- Stream processing:
 - "µEngines"
- Software:
 - Compiler,Assembler,Simulator

System Vision

Related Work

- FPGA IP Core
 - Matlab/Simulink Image/Video Processing toolbox [1]
 - Inhouse core
- CPU Processing 12 cores
 - OpenCV library C++ [2]
- GPU Processing
 - NVIDIA Performance Primitives [3]

Methodology

- Requirements
- Infrastructure
 - Risk assessment, prototyping
 - Design space exploration / automation
- Application driven design
- Design iterations: simple → complex

Methodology

- Iteration 1: Simple Filter
- Iteration 2: Image Analysis
- Iteration 3: Compression

Each iteration:

- Design Space Exploration
- Evaluation
 - IP core vs. our architecture
 - Suitablability

High-Level Requirements

- Real-time image filtering
- Support: "Quick turnaround & prototyping"
- Reusable across various projects
 - Extensible
 - Configurable

HW Components:

- Data Stream Mixer
 - Segmentation, differential pictures
- Nano-Engine Types
 - Few specialized instructions e.g. MAC, SAD
 - VLIW very long instruction word
- Accumulator
 - Reassemble data stream

Design: Flow

- Algorithmic Description
 - Assembler or C-like
 - Graph (Simulink)
- Compiler
 - Data flow → mixer / routing
 - Computations → Nano-Engines
- Bitstream
 - Pre-synthesized + dynamic reconfiguration

Current status

- Binomial Filter
 - VHDL
 - Bluespec
- Design space exploration: Cluster Job System
 - Automation
 - Parallelization

Binomial Filter

Bluespec vs. HDL: both 300 MHz

```
typedef UInt#(10) Pixel;
interface Filter ifc;
    interface Put#(Pixel) din;
    interface Get#(Pixel) dout;
Endinterface
let row filter <- mkFilterByRow;</pre>
let col filter <- mkFilterByCol;</pre>
mkConnection(row_filter.dout, col_filter.din);
```

Cluster Job System

(17) Demo

First results

- Design space exploration:
 - Maximum frequency / number of Slices
 - Power
 - Virtex 6 Quiescent Power:
 - 2.2 W
 - +1.2 W: GTX Transceiver [4]

Design Space Exploration

PAR Report

Number of Slice Registers: 362 Number of Slice LUTs: 291

Utilization

References

- [1] Matlab Simulink, http://www.mathworks.de/products/ simulink/index.html
- [2] http://opencv.willowgarage.com/wiki/
- [3] NVIDIA Performance Primitives, http://developer.nvidia.com/npp
- [4] http://www.xilinx.com/support/
 answers/35055.htm