Flexible Data-Flow Processing

Christian Brugger

www.Kkit.edu

01.09.2011




m Introduction
m System Vision
m Related Work

= Methodology
m Requirements
m Architecture
= Current State

Outline




Introduction

m Projects:
UFO — visible light
MEDIPIX — x-ray
USCT — ultra sound
= High bandwidth:
Streaming:
1 GB/s .. 100 GB/s
Preprocessing
Analysis




Motivation

m UFO

m Short setup time & one shot experiments
“Beam-time Is expensive”

m Goal: “Quick & easy” framework for stream
processing (> 1 GB/s)
m Focus on algorithm (not HDL-design)
m Reusable across projects

s Customizable / Extensible
s “Easy things simple, difficult things possible”




System Vision

m Stream
Read-out processing:
m “HENngines’
m Software:

MENgines = Compiler,
Assembler,
Simulator

Write-out




System Vision

UENngines

Write-out




Related Work

m FPGA - IP Core

= Matlab/Simulink — Image/Video Processing
toolbox [1]

= Inhouse core

m CPU - Processing — 12 cores
= OpenCV library C++ [2]

= GPU — Processing
= NVIDIA Performance Primitives [3]




Methodology

= Requirements

= Infrastructure
m Risk assessment, prototyping
= Design space exploration / automation

m Application driven design
m Design iterations: simple - complex




Methodology

teration 1: Simple Filter
teration 2: Image Analysis
teration 3: Compression
Each iteration:

m Design Space Exploration

m Evaluation
= I[P core vs. our architecture
= Suitablability




High-Level Requirements

m Real-time image filtering
m Support: “Quick turnaround & prototyping”

m Reusable across various projects
= Extensible
= Configurable




Design: Architecture

cameraf

Read-out




HW Components:

m Data Stream Mixer
= Segmentation, differential pictures

= Nano-Engine - Types
m Few specialized instructions e.g. MAC, SAD
= VLIW - very long instruction word

= Accumulator
m Reassemble data stream




Design: Flow

m Algorithmic Description
m Assembler or C-like
= Graph (Simulink)
= Compiler
= Data flow = mixer / routing
= Computations = Nano-Engines

= Bitstream
= Pre-synthesized + dynamic reconfiguration




Current status

m Binomial Filter
x VHDL
= Bluespec

m Design space exploration: Cluster Job
System

= Automation
= Parallelization




Binomial Filter

m Bluespec vs. HDL: both 300 MHz

typedef UInt#(10) Pixel;

interface Filter ifc;
interface Put#(Pixel) din;
interface Get#(Pixel) dout;
Endinterface

let row filter <- mkFilterByRow;
let col filter <- mkFilterByCol;

mkConnection(row_filter.dout, col filter.din);




Cluster Job System

Master JobSlave

JobSlave
Job Manager

Slave Monitor JobSlave

40 slaves
24 cores each







First results

m Design space exploration:
= Maximum frequency / number of Slices
= Power

= Virtex 6 Quiescent Power:
m2.2W
m+1.2 W: GTX Transceiver [4]




Design Space Exploration

First routable design

Available
Registers

Available
LUTs

10 50 100 150 200 300

Frequency

PAR Report

Number of Slice Registers: 362
Number of Slice LUTSs: 291




Utilization

1]

E




References

= [1] Matlab Simulink,
http://www.mathworks.de/products/

simulink/index.html

2.

http://opencv.willowgarage.com/wiki/

a

NVIDIA Performance Primitives,

ttp:/developer.nvidia.com/npp
4] http://www.xilinx.com/support/

answers/35055.htm




