Shift Detection. Status Report.

Vladimir Reznichenko, 01-July-2011

Global shift

Right picture has shift 200 pixels by y-axis and 1 pixel by x-axis

Alternatives

Spectrum based analysis (FFT transformation, correlation)

Not stable for cases of illumination changes, structure changes (deformation, rotation etc.)

• Optical flow methods

There are lot of different methods and techniques with different complexity. Basically quite complicated or requires image preprocessing for stable results.

Region of interest (ROI)

- Track only region of interest, omitting rest part of image to reduce computations.

Also it is possible to reduce computations more efficiently by:

- using only part of ROI
- downsizing ROI

Similarity estimation

Problems:

- 1) Noise
- 2) Brightness changes
- 3) Sample structure changes

Solution: intensity based calculation:

$$R(x,y) = \frac{\sum_{x',y'} (T(x',y') - I(x+x',y+y'))^2}{\sqrt{\sum_{x',y'} T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}$$

- $T \qquad \text{template} \qquad x'=0...w-1, y'=0...h-1$
- R result $w \times h$ Image dimension I image

This formula gives for ROI + border region similarity estimation. Minimum value correspond to minimal differences between image and template.

Improvements

Sector/weight based model to stabilize detection.

I / <mark>0.5</mark>	II / <mark>0.8</mark>	III / <mark>0.5</mark>
IV / <mark>0.8</mark>	V / 1	VI / <mark>0.8</mark>
VII / 0.5	VIII / 0.8	IX / 0.5

Perspectives

Possible improvements

• GPU (CUDA) based implementation.

Applications:

- Sample positioning / camera adjustment.
- Topography
- Fast tracking separate objects (biology)