

Procedure for Camera Characterization

T. dos Santos Rolo, M. Caselle

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Universität Karlsruhe (TH) Research University · founded 1825

Outline

- Noisy and efficiency in the silicon pixel detectors "basic concept"
- Pixel characterization & protocol \rightarrow by Beam light setup

www.kit.edu

Sub-sampling strategy for rows 'fast reject'

Fast reject algorithm has been verified in the UFO environment using real data sample.

Reference image

2

Idea and Real detector response

For a uniform light explosion, the mean value ($\mu_{response}$) \rightarrow is correlated at the mean value of the energy released in the sensor matrix. The STD value ($\sigma_{response}$) \rightarrow take into account the non-uniform response between pixels.

Characterize silicon pixel detector \rightarrow to have a clear idea how optimize the ($\mu_{response'} \sigma_{response}$) in the different operating point.

Noise contributions in UFO Camera

Several noise sources are present in UFO camera, each component should be proper characterized by different test setup.

The main noise source are located:

- Detector and FEE (Front-End Electronic) \rightarrow
 - Fano factor $\overline{Q} = q * E / w$ $\sigma_Q = q * \sqrt{F * E / w}$ (w=3.6eV)
 - Shot, thermal (white noisy) + Flicker (red noisy)

External environment condition \rightarrow

- temperature, power supply noisy, etc.
- Beam distribution and instability \rightarrow
 - Detector under non-uniform illumination → will be compensated using different strategies, etc.

New activity

Noisy estimation (METHOD-1)

Noisy estimation (METHOD-1) (ii)

Noisy vs Detector temperature and exposure time

Understand the maximum temperature to keep the noisy level under reasonable condition The effects of a long exp. time must be well evaluated

Minimum threshold estimation (MET. - 2)

Initial: Fix the Temp. and exposure time found in MET.-1. Detector \rightarrow dark

N.B. all camera available have a threshold discriminator but not in all model is accessible

Detector efficiency estimation (METHOD-3)

Initial: Detector @ minimum threshold operating point \rightarrow max S/N ratio

Wavelength @ middle band (540 - 580 nm)

Algorithm: one or more frames @ progressive luminosity intensity (from min to max) \rightarrow for each intensity value (mean and STD) must be evaluated

Efficiency vs FEE settings (METHOD-4) (ii)

Initial: Detector @ minimum threshold operating point \rightarrow max S/N ratio

Wavelength @ middle band (540 - 580 nm)

Results: Estimation of the S/N and pixel distibution for different analog settings

Spectral response (METHOD -4)

Initial: Detector @ minimum threshold operating point \rightarrow max S/N ratio

PW light @ 50% of mean ADC counts.

GOAL: → spectral response for monochrome Pixel matrix
GOAL: → spectral response vs camera FEE settings

Conclusion & what's next

A protocol for camera characterization is under definition, basic method are defined:

METHOD 1 \rightarrow noisy behaviour and distribution METHOD 2 \rightarrow Min THR estimation METHOD 3 \rightarrow Efficiency & S/N in ADC (counts) estimation METHOD 4 \rightarrow spectral response

Second step consists in additional Methods using radioactive source (FE55) for conversion ADC count to ENC (equivalent noise charge)

Laser test setup for fast reject \rightarrow test and performance

